Sparse Signal Recovery Methods for Multiplexing PET Detector Readout

Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2013-05, Vol.32 (5), p.932-942
Main Authors: Chinn, G., Olcott, P. D., Levin, C. S.
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
recordid cdi_pubmed_primary_23475349
title Sparse Signal Recovery Methods for Multiplexing PET Detector Readout
format Article
creator Chinn, G.
Olcott, P. D.
Levin, C. S.
subjects Algorithms
Compressed sensing
Compressive sensing
Computer Simulation
Crystals
Detectors
image acquisition
Multiplexing
nuclear imaging
optimization
Positron emission tomography
positron emission tomography (PET)
Positron-Emission Tomography - instrumentation
Positron-Emission Tomography - methods
probabilistic and statistical method
Signal Processing, Computer-Assisted
Signal-To-Noise Ratio
Vectors
ispartof IEEE transactions on medical imaging, 2013-05, Vol.32 (5), p.932-942
description Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy ℓ 0 iterative algorithms or ℓ 1 -norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.
language eng
source IEEE Electronic Library (IEL) Journals
identifier ISSN: 0278-0062
fulltext fulltext
issn 0278-0062
1558-254X
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-04-27T10%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Signal%20Recovery%20Methods%20for%20Multiplexing%20PET%20Detector%20Readout&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chinn,%20G.&rft.date=2013-05-01&rft.volume=32&rft.issue=5&rft.spage=932&rft.epage=942&rft.pages=932-942&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2013.2246182&rft_dat=%3Cproquest_pubme%3E1349398913%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a1cbdebc468e845268ecb63c8a2cb7ce0705e17ec971c5e97ba276c8baeda143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349398913&rft_id=info:pmid/23475349&rft_ieee_id=6471237
container_title IEEE transactions on medical imaging
container_volume 32
container_issue 5
container_start_page 932
container_end_page 942
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23475349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6471237</ieee_id><sourcerecordid>1349398913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a1cbdebc468e845268ecb63c8a2cb7ce0705e17ec971c5e97ba276c8baeda143</originalsourceid><addsrcrecordid>eNo9kE1PwkAURSdGI4juTUxMl26K89mZWRpAJYFooAt3k-n0gTWF1pnWyL-3BGT1Fvfcm7yD0C3BQ0Kwfkzn0yHFhA0p5QlR9Az1iRAqpoJ_nKM-plLFGCe0h65C-MKYcIH1JepRxqVgXPfReFlbHyBaFuutLaMFuOoH_C6aQ_NZ5SFaVT6at2VT1CX8Ftt19D5JozE04JouWYDNq7a5RhcrWwa4Od4BSp8n6eg1nr29TEdPs9gxopvYEpflkDmeKFBc0O64LGFOWeoy6QBLLIBIcFoSJ0DLzFKZOJVZyC3hbIAeDrO1r75bCI3ZFMFBWdotVG0wpPuIaaUJ61B8QJ2vQvCwMrUvNtbvDMFmr8506sxenTmq6yr3x_U220B-Kvy76oC7A1AAwClOuCSUSfYHtONyug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><isCDI>true</isCDI><recordtype>article</recordtype><pqid>1349398913</pqid></control><display><type>article</type><title>Sparse Signal Recovery Methods for Multiplexing PET Detector Readout</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chinn, G. ; Olcott, P. D. ; Levin, C. S.</creator><creatorcontrib>Chinn, G. ; Olcott, P. D. ; Levin, C. S.</creatorcontrib><description>Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy ℓ 0 iterative algorithms or ℓ 1 -norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2013.2246182</identifier><identifier>PMID: 23475349</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Compressed sensing ; Compressive sensing ; Computer Simulation ; Crystals ; Detectors ; image acquisition ; Multiplexing ; nuclear imaging ; optimization ; Positron emission tomography ; positron emission tomography (PET) ; Positron-Emission Tomography - instrumentation ; Positron-Emission Tomography - methods ; probabilistic and statistical method ; Signal Processing, Computer-Assisted ; Signal-To-Noise Ratio ; Vectors</subject><ispartof>IEEE transactions on medical imaging, 2013-05, Vol.32 (5), p.932-942</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a1cbdebc468e845268ecb63c8a2cb7ce0705e17ec971c5e97ba276c8baeda143</citedby><cites>FETCH-LOGICAL-c319t-a1cbdebc468e845268ecb63c8a2cb7ce0705e17ec971c5e97ba276c8baeda143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6471237$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,787,791,27992,27993,55503</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23475349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chinn, G.</creatorcontrib><creatorcontrib>Olcott, P. D.</creatorcontrib><creatorcontrib>Levin, C. S.</creatorcontrib><title>Sparse Signal Recovery Methods for Multiplexing PET Detector Readout</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy ℓ 0 iterative algorithms or ℓ 1 -norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.</description><subject>Algorithms</subject><subject>Compressed sensing</subject><subject>Compressive sensing</subject><subject>Computer Simulation</subject><subject>Crystals</subject><subject>Detectors</subject><subject>image acquisition</subject><subject>Multiplexing</subject><subject>nuclear imaging</subject><subject>optimization</subject><subject>Positron emission tomography</subject><subject>positron emission tomography (PET)</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Positron-Emission Tomography - methods</subject><subject>probabilistic and statistical method</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal-To-Noise Ratio</subject><subject>Vectors</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAURSdGI4juTUxMl26K89mZWRpAJYFooAt3k-n0gTWF1pnWyL-3BGT1Fvfcm7yD0C3BQ0Kwfkzn0yHFhA0p5QlR9Az1iRAqpoJ_nKM-plLFGCe0h65C-MKYcIH1JepRxqVgXPfReFlbHyBaFuutLaMFuOoH_C6aQ_NZ5SFaVT6at2VT1CX8Ftt19D5JozE04JouWYDNq7a5RhcrWwa4Od4BSp8n6eg1nr29TEdPs9gxopvYEpflkDmeKFBc0O64LGFOWeoy6QBLLIBIcFoSJ0DLzFKZOJVZyC3hbIAeDrO1r75bCI3ZFMFBWdotVG0wpPuIaaUJ61B8QJ2vQvCwMrUvNtbvDMFmr8506sxenTmq6yr3x_U220B-Kvy76oC7A1AAwClOuCSUSfYHtONyug</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Chinn, G.</creator><creator>Olcott, P. D.</creator><creator>Levin, C. S.</creator><general>IEEE</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Sparse Signal Recovery Methods for Multiplexing PET Detector Readout</title><author>Chinn, G. ; Olcott, P. D. ; Levin, C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a1cbdebc468e845268ecb63c8a2cb7ce0705e17ec971c5e97ba276c8baeda143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Compressed sensing</topic><topic>Compressive sensing</topic><topic>Computer Simulation</topic><topic>Crystals</topic><topic>Detectors</topic><topic>image acquisition</topic><topic>Multiplexing</topic><topic>nuclear imaging</topic><topic>optimization</topic><topic>Positron emission tomography</topic><topic>positron emission tomography (PET)</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Positron-Emission Tomography - methods</topic><topic>probabilistic and statistical method</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal-To-Noise Ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chinn, G.</creatorcontrib><creatorcontrib>Olcott, P. D.</creatorcontrib><creatorcontrib>Levin, C. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chinn, G.</au><au>Olcott, P. D.</au><au>Levin, C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Signal Recovery Methods for Multiplexing PET Detector Readout</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>32</volume><issue>5</issue><spage>932</spage><epage>942</epage><pages>932-942</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property. However, the restricted isometry property provides little guidance for developing multiplexing networks with good signal-to-noise recovery capability. In this work, we describe compressed sensing using a maximum likelihood framework and develop a new method for constructing multiplexing (sensing) matrices that can recover signals more accurately in a mean square error sense compared to sensing matrices constructed by random construction methods. Signals can then be recovered by maximum likelihood estimation constrained to the support recovered by either greedy ℓ 0 iterative algorithms or ℓ 1 -norm minimization techniques. We show that this new method for constructing and decoding sensing matrices recovers signals with 4%-110% higher SNR than random Gaussian sensing matrices, up to 100% higher SNR than partial DCT sensing matrices 50%-2400% higher SNR than cross-strip multiplexing, and 22%-210% higher SNR than Anger multiplexing for photoelectric events.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23475349</pmid><doi>10.1109/TMI.2013.2246182</doi></addata></record>