Loading…

Spatial Filtering for Robust Myoelectric Control

Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, dif...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2012-05, Vol.59 (5), p.1436-1443
Main Authors: Hahne, Janne Mathias, Graimann, Bernhard, Muller, Klaus-Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3
cites cdi_FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3
container_end_page 1443
container_issue 5
container_start_page 1436
container_title IEEE transactions on biomedical engineering
container_volume 59
creator Hahne, Janne Mathias
Graimann, Bernhard
Muller, Klaus-Robert
description Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.
doi_str_mv 10.1109/TBME.2012.2188799
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmed_primary_22374342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6156755</ieee_id><sourcerecordid>1009802761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMobk4fQATpjeBNZ07SpMmljk2FDUHndUnTU6l0zUzai729Havz6nA43_9z-Ai5BjoFoPph_bSaTxkFNmWgVKr1CRmDECpmgsMpGVMKKtZMJyNyEcJ3vyYqkedkxBhPE56wMaEfW9NWpo4WVd2ir5qvqHQ-end5F9potXNYo219ZaOZa1rv6ktyVpo64NUwJ-RzMV_PXuLl2_Pr7HEZWy6gjUtTIDDDE6ELBSg5xbJ_hCPLpdSskFZZRWWeK5kDpnkhkLPUcCioLgzmfELuD71b7346DG22qYLFujYNui5kQKlWlKUSehQOqPUuBI9ltvXVxvhdD2V7UdleVLYXlQ2i-sztUN_lGyyOiT8zPXA3ACZYU5feNLYK_5xQkoHkPXdz4CpEPJ4lCJkKwX8BTg14bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009802761</pqid></control><display><type>article</type><title>Spatial Filtering for Robust Myoelectric Control</title><source>IEEE Xplore All Conference Series</source><creator>Hahne, Janne Mathias ; Graimann, Bernhard ; Muller, Klaus-Robert</creator><creatorcontrib>Hahne, Janne Mathias ; Graimann, Bernhard ; Muller, Klaus-Robert</creatorcontrib><description>Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2012.2188799</identifier><identifier>PMID: 22374342</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Limbs ; Common spatial pattern (csp) ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Electrodes ; Electromyography ; Electromyography - methods ; Exact sciences and technology ; Female ; Forearm - physiology ; Hand - physiology ; hand prostheses ; Humans ; Information, signal and communications theory ; Joints ; Male ; Motor Activity - physiology ; Muscle, Skeletal - physiology ; myoelectric control ; Noise ; Pattern recognition ; Pattern Recognition, Automated - methods ; prosthetic control ; prosthetics ; Reproducibility of Results ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Signal, noise ; spatial filters ; Telecommunications and information theory ; Training</subject><ispartof>IEEE transactions on biomedical engineering, 2012-05, Vol.59 (5), p.1436-1443</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3</citedby><cites>FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6156755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,54906,55147,55283</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6156755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25862163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22374342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hahne, Janne Mathias</creatorcontrib><creatorcontrib>Graimann, Bernhard</creatorcontrib><creatorcontrib>Muller, Klaus-Robert</creatorcontrib><title>Spatial Filtering for Robust Myoelectric Control</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Limbs</subject><subject>Common spatial pattern (csp)</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Exact sciences and technology</subject><subject>Female</subject><subject>Forearm - physiology</subject><subject>Hand - physiology</subject><subject>hand prostheses</subject><subject>Humans</subject><subject>Information, signal and communications theory</subject><subject>Joints</subject><subject>Male</subject><subject>Motor Activity - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>myoelectric control</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>prosthetic control</subject><subject>prosthetics</subject><subject>Reproducibility of Results</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal, noise</subject><subject>spatial filters</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkNFKwzAUhoMobk4fQATpjeBNZ07SpMmljk2FDUHndUnTU6l0zUzai729Havz6nA43_9z-Ai5BjoFoPph_bSaTxkFNmWgVKr1CRmDECpmgsMpGVMKKtZMJyNyEcJ3vyYqkedkxBhPE56wMaEfW9NWpo4WVd2ir5qvqHQ-end5F9potXNYo219ZaOZa1rv6ktyVpo64NUwJ-RzMV_PXuLl2_Pr7HEZWy6gjUtTIDDDE6ELBSg5xbJ_hCPLpdSskFZZRWWeK5kDpnkhkLPUcCioLgzmfELuD71b7346DG22qYLFujYNui5kQKlWlKUSehQOqPUuBI9ltvXVxvhdD2V7UdleVLYXlQ2i-sztUN_lGyyOiT8zPXA3ACZYU5feNLYK_5xQkoHkPXdz4CpEPJ4lCJkKwX8BTg14bQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hahne, Janne Mathias</creator><creator>Graimann, Bernhard</creator><creator>Muller, Klaus-Robert</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Spatial Filtering for Robust Myoelectric Control</title><author>Hahne, Janne Mathias ; Graimann, Bernhard ; Muller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Limbs</topic><topic>Common spatial pattern (csp)</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Exact sciences and technology</topic><topic>Female</topic><topic>Forearm - physiology</topic><topic>Hand - physiology</topic><topic>hand prostheses</topic><topic>Humans</topic><topic>Information, signal and communications theory</topic><topic>Joints</topic><topic>Male</topic><topic>Motor Activity - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>myoelectric control</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>prosthetic control</topic><topic>prosthetics</topic><topic>Reproducibility of Results</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal, noise</topic><topic>spatial filters</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahne, Janne Mathias</creatorcontrib><creatorcontrib>Graimann, Bernhard</creatorcontrib><creatorcontrib>Muller, Klaus-Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hahne, Janne Mathias</au><au>Graimann, Bernhard</au><au>Muller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Filtering for Robust Myoelectric Control</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>59</volume><issue>5</issue><spage>1436</spage><epage>1443</epage><pages>1436-1443</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22374342</pmid><doi>10.1109/TBME.2012.2188799</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2012-05, Vol.59 (5), p.1436-1443
issn 0018-9294
1558-2531
language eng
recordid cdi_pubmed_primary_22374342
source IEEE Xplore All Conference Series
subjects Algorithms
Applied sciences
Artificial Limbs
Common spatial pattern (csp)
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Electrodes
Electromyography
Electromyography - methods
Exact sciences and technology
Female
Forearm - physiology
Hand - physiology
hand prostheses
Humans
Information, signal and communications theory
Joints
Male
Motor Activity - physiology
Muscle, Skeletal - physiology
myoelectric control
Noise
Pattern recognition
Pattern Recognition, Automated - methods
prosthetic control
prosthetics
Reproducibility of Results
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
spatial filters
Telecommunications and information theory
Training
title Spatial Filtering for Robust Myoelectric Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Filtering%20for%20Robust%20Myoelectric%20Control&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Hahne,%20Janne%20Mathias&rft.date=2012-05-01&rft.volume=59&rft.issue=5&rft.spage=1436&rft.epage=1443&rft.pages=1436-1443&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2012.2188799&rft_dat=%3Cproquest_CHZPO%3E1009802761%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-fade12a3459d81e630ef2943e2b6692d6c8c806bb86b1e7bd5e327a31d09daeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1009802761&rft_id=info:pmid/22374342&rft_ieee_id=6156755&rfr_iscdi=true