Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts

Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fib...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (46), p.20009-20014
Main Authors: Kojima, Yasushi, Acar, Ahmet, Eaton, Elinor Ng, Mellody, Kieran T, Scheel, Christina, Ben-Porath, Ittai, Onder, Tamer T, Wang, Zhigang C, Richardson, Andrea L, Weinberg, Robert A, Orimo, Akira
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
recordid cdi_pubmed_primary_21041659
title Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts
format Article
creator Kojima, Yasushi
Acar, Ahmet
Eaton, Elinor Ng
Mellody, Kieran T
Scheel, Christina
Ben-Porath, Ittai
Onder, Tamer T
Wang, Zhigang C
Richardson, Andrea L
Weinberg, Robert A
Orimo, Akira
subjects Animals
Autocrine Communication
Biological Sciences
Breast cancer
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Breasts
Cancer
Carcinoma
Cell Differentiation
Chemokine CXCL12 - metabolism
Epithelial cells
Female
Fibroblasts
Humans
Mammary Glands, Human - metabolism
Mammary Glands, Human - pathology
Mice
Myofibroblasts
Myofibroblasts - pathology
Neoplasm Invasiveness
Receptors, CXCR4 - metabolism
Signal Transduction
Stem cells
Stromal cells
Stromal Cells - metabolism
Stromal Cells - pathology
Transforming Growth Factor beta - metabolism
Tumors
Xenograft Model Antitumor Assays
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.20009-20014
description Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.
language eng
source PubMed Central (Open access); JSTOR Archival Journals and Primary Sources Collection
identifier ISSN: 0027-8424
fulltext fulltext
issn 0027-8424
1091-6490
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-05-28T10%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocrine%20TGF-%CE%B2%20and%20stromal%20cell-derived%20factor-1%20(SDF-1)%20signaling%20drives%20the%20evolution%20of%20tumor-promoting%20mammary%20stromal%20myofibroblasts&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kojima,%20Yasushi&rft.date=2010-11-16&rft.volume=107&rft.issue=46&rft.spage=20009&rft.epage=20014&rft.pages=20009-20014&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1013805107&rft_dat=%3Cjstor_pubme%3E25748795%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-5fca3bf4118b7c377ef2638b4bd7637a1c232e730184ce19df386bb1508efc7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=808453660&rft_id=info:pmid/21041659&rft_jstor_id=25748795
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
container_issue 46
container_start_page 20009
container_end_page 20014
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_21041659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748795</jstor_id><sourcerecordid>25748795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5fca3bf4118b7c377ef2638b4bd7637a1c232e730184ce19df386bb1508efc7b3</originalsourceid><addsrcrecordid>eNpVkcFuFCEcxonR2HX17Enlph7GwsAAc2nStN1q0sRD2zMBBrY0M8MKzCZ9Bt_GB_GZZLLrrnKB8P3-H1_4AHiL0ReMODndjCqVEyYCNeXiGVhg1OKK0RY9BwuEal4JWtMT8CqlR4RQ2wj0EpzUGFHMmnYBfp5POZjoRwvvrlfV719QjR1MOYZB9dDYvq86G_3WdtApk0OsMPx0e7mq8GeY_HpUvR_XsJuJBPODhXYb-in7MMLgYJ6GMrEpZiHP3KCGQcWng__wFJzXMehepZxegxdO9cm-2e9LcL-6urv4Wt18v_52cX5TGcpIrhpnFNGOYiw0N4Rz62pGhKa644xwhU1NassJwoIai9vOEcG0xg0S1hmuyRKc7Xw3kx5sZ-yYo-rlJvo5nAzKy_-V0T_IddjKum3JvJbg494ghh-TTVkOPs1_pUYbpiQFErQhjKFCnu5IE0NK0brDKxjJuUE5NyiPDZaJ9_-GO_B_KysA3APz5NGOS8pkPXdckHc75DGVxo4WDaeCt03RP-x0p4JU6-iTvL-tSwaEW4wZxeQPLyq4Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><isCDI>true</isCDI><recordtype>article</recordtype><pqid>808453660</pqid></control><display><type>article</type><title>Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts</title><source>PubMed Central (Open access)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kojima, Yasushi ; Acar, Ahmet ; Eaton, Elinor Ng ; Mellody, Kieran T ; Scheel, Christina ; Ben-Porath, Ittai ; Onder, Tamer T ; Wang, Zhigang C ; Richardson, Andrea L ; Weinberg, Robert A ; Orimo, Akira</creator><creatorcontrib>Kojima, Yasushi ; Acar, Ahmet ; Eaton, Elinor Ng ; Mellody, Kieran T ; Scheel, Christina ; Ben-Porath, Ittai ; Onder, Tamer T ; Wang, Zhigang C ; Richardson, Andrea L ; Weinberg, Robert A ; Orimo, Akira</creatorcontrib><description>Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1013805107</identifier><identifier>PMID: 21041659</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Autocrine Communication ; Biological Sciences ; Breast cancer ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Breasts ; Cancer ; Carcinoma ; Cell Differentiation ; Chemokine CXCL12 - metabolism ; Epithelial cells ; Female ; Fibroblasts ; Humans ; Mammary Glands, Human - metabolism ; Mammary Glands, Human - pathology ; Mice ; Myofibroblasts ; Myofibroblasts - pathology ; Neoplasm Invasiveness ; Receptors, CXCR4 - metabolism ; Signal Transduction ; Stem cells ; Stromal cells ; Stromal Cells - metabolism ; Stromal Cells - pathology ; Transforming Growth Factor beta - metabolism ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (46), p.20009-20014</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5fca3bf4118b7c377ef2638b4bd7637a1c232e730184ce19df386bb1508efc7b3</citedby><cites>FETCH-LOGICAL-c463t-5fca3bf4118b7c377ef2638b4bd7637a1c232e730184ce19df386bb1508efc7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748795$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748795$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,734,787,791,892,27985,27986,54176,54178,58942,59175</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21041659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kojima, Yasushi</creatorcontrib><creatorcontrib>Acar, Ahmet</creatorcontrib><creatorcontrib>Eaton, Elinor Ng</creatorcontrib><creatorcontrib>Mellody, Kieran T</creatorcontrib><creatorcontrib>Scheel, Christina</creatorcontrib><creatorcontrib>Ben-Porath, Ittai</creatorcontrib><creatorcontrib>Onder, Tamer T</creatorcontrib><creatorcontrib>Wang, Zhigang C</creatorcontrib><creatorcontrib>Richardson, Andrea L</creatorcontrib><creatorcontrib>Weinberg, Robert A</creatorcontrib><creatorcontrib>Orimo, Akira</creatorcontrib><title>Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.</description><subject>Animals</subject><subject>Autocrine Communication</subject><subject>Biological Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Breasts</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Cell Differentiation</subject><subject>Chemokine CXCL12 - metabolism</subject><subject>Epithelial cells</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Humans</subject><subject>Mammary Glands, Human - metabolism</subject><subject>Mammary Glands, Human - pathology</subject><subject>Mice</subject><subject>Myofibroblasts</subject><subject>Myofibroblasts - pathology</subject><subject>Neoplasm Invasiveness</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Stromal Cells - metabolism</subject><subject>Stromal Cells - pathology</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkcFuFCEcxonR2HX17Enlph7GwsAAc2nStN1q0sRD2zMBBrY0M8MKzCZ9Bt_GB_GZZLLrrnKB8P3-H1_4AHiL0ReMODndjCqVEyYCNeXiGVhg1OKK0RY9BwuEal4JWtMT8CqlR4RQ2wj0EpzUGFHMmnYBfp5POZjoRwvvrlfV719QjR1MOYZB9dDYvq86G_3WdtApk0OsMPx0e7mq8GeY_HpUvR_XsJuJBPODhXYb-in7MMLgYJ6GMrEpZiHP3KCGQcWng__wFJzXMehepZxegxdO9cm-2e9LcL-6urv4Wt18v_52cX5TGcpIrhpnFNGOYiw0N4Rz62pGhKa644xwhU1NassJwoIai9vOEcG0xg0S1hmuyRKc7Xw3kx5sZ-yYo-rlJvo5nAzKy_-V0T_IddjKum3JvJbg494ghh-TTVkOPs1_pUYbpiQFErQhjKFCnu5IE0NK0brDKxjJuUE5NyiPDZaJ9_-GO_B_KysA3APz5NGOS8pkPXdckHc75DGVxo4WDaeCt03RP-x0p4JU6-iTvL-tSwaEW4wZxeQPLyq4Zg</recordid><startdate>20101116</startdate><enddate>20101116</enddate><creator>Kojima, Yasushi</creator><creator>Acar, Ahmet</creator><creator>Eaton, Elinor Ng</creator><creator>Mellody, Kieran T</creator><creator>Scheel, Christina</creator><creator>Ben-Porath, Ittai</creator><creator>Onder, Tamer T</creator><creator>Wang, Zhigang C</creator><creator>Richardson, Andrea L</creator><creator>Weinberg, Robert A</creator><creator>Orimo, Akira</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101116</creationdate><title>Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts</title><author>Kojima, Yasushi ; Acar, Ahmet ; Eaton, Elinor Ng ; Mellody, Kieran T ; Scheel, Christina ; Ben-Porath, Ittai ; Onder, Tamer T ; Wang, Zhigang C ; Richardson, Andrea L ; Weinberg, Robert A ; Orimo, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5fca3bf4118b7c377ef2638b4bd7637a1c232e730184ce19df386bb1508efc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Autocrine Communication</topic><topic>Biological Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Breasts</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Cell Differentiation</topic><topic>Chemokine CXCL12 - metabolism</topic><topic>Epithelial cells</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Humans</topic><topic>Mammary Glands, Human - metabolism</topic><topic>Mammary Glands, Human - pathology</topic><topic>Mice</topic><topic>Myofibroblasts</topic><topic>Myofibroblasts - pathology</topic><topic>Neoplasm Invasiveness</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Stromal Cells - metabolism</topic><topic>Stromal Cells - pathology</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kojima, Yasushi</creatorcontrib><creatorcontrib>Acar, Ahmet</creatorcontrib><creatorcontrib>Eaton, Elinor Ng</creatorcontrib><creatorcontrib>Mellody, Kieran T</creatorcontrib><creatorcontrib>Scheel, Christina</creatorcontrib><creatorcontrib>Ben-Porath, Ittai</creatorcontrib><creatorcontrib>Onder, Tamer T</creatorcontrib><creatorcontrib>Wang, Zhigang C</creatorcontrib><creatorcontrib>Richardson, Andrea L</creatorcontrib><creatorcontrib>Weinberg, Robert A</creatorcontrib><creatorcontrib>Orimo, Akira</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kojima, Yasushi</au><au>Acar, Ahmet</au><au>Eaton, Elinor Ng</au><au>Mellody, Kieran T</au><au>Scheel, Christina</au><au>Ben-Porath, Ittai</au><au>Onder, Tamer T</au><au>Wang, Zhigang C</au><au>Richardson, Andrea L</au><au>Weinberg, Robert A</au><au>Orimo, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-16</date><risdate>2010</risdate><volume>107</volume><issue>46</issue><spage>20009</spage><epage>20014</epage><pages>20009-20014</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Author contributions: A.O. designed research; Y.K., A.A., E.N.E., K.T.M., C.S., and A.O. performed research; I.B.-P., T.T.O., Z.C.W., and A.L.R. contributed new reagents/analytic tools; Y.K., A.A., R.A.W., and A.O. analyzed data; and K.T.M., R.A.W., and A.O. wrote the paper.</notes><notes>Contributed by Robert A. Weinberg, September 17, 2010 (sent for review July 22, 2010)</notes><abstract>Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21041659</pmid><doi>10.1073/pnas.1013805107</doi><oa>free_for_read</oa></addata></record>