Loading…

Scaling Up Hydrogenation Processes for Biomass Conversion

One of the most promising pathways to biomass-based, sustainable chemicals is the sugar platform that includes conversions of monosaccharides, disaccharides and polysaccharides, and their derivates, via biochemical and thermochemical processes. Hydrogenation and hydrogenolysis reactions are of parti...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Engineering 2022-12, Vol.129 (12), p.37-40
Main Authors: Epp, Konstantin, Keller, Wolfgang, Labusch, Marc, Rojan, Peter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 40
container_issue 12
container_start_page 37
container_title Chemical Engineering
container_volume 129
creator Epp, Konstantin
Keller, Wolfgang
Labusch, Marc
Rojan, Peter
description One of the most promising pathways to biomass-based, sustainable chemicals is the sugar platform that includes conversions of monosaccharides, disaccharides and polysaccharides, and their derivates, via biochemical and thermochemical processes. Hydrogenation and hydrogenolysis reactions are of particular significance amongst those thermochemical pathways. Nature produces many different unsaturated products, including C=C double bonds, in carbonyl groups in the structural aldoses and ketoses of cellulose and hemicellulose. This article describes a practical approach to respond to these challenges by applying an integrated development and optimization strategy beginning at laboratory scale, through piloting and demonstration scale, before building a commercial plant. Guidelines on how to approach specific hydrogenation problems, concepts and tools for the design, development and scaleup of catalytic hydrogenation processes are discussed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_reports_2792604572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792604572</sourcerecordid><originalsourceid>FETCH-proquest_reports_27926045723</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCrKfdxjaC9Ooo7NNCpdBBe1ksKsYNtfutaC3z0UP0Opw4JuIYGvjJIxMdp2KQCllQx0bNRcL5vu4Os1MIOypcl3rG3npZfG5ETbg3dCil0fCCpiBZY0kdy0-HLPM0b-BeAQrMatdx7D-dSk2h_05L8Ke8PkCHkqCHmngUqdWGxUnqY7-Ql8fLDdR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792604572</pqid></control><display><type>article</type><title>Scaling Up Hydrogenation Processes for Biomass Conversion</title><source>ABI/INFORM Global</source><creator>Epp, Konstantin ; Keller, Wolfgang ; Labusch, Marc ; Rojan, Peter</creator><creatorcontrib>Epp, Konstantin ; Keller, Wolfgang ; Labusch, Marc ; Rojan, Peter</creatorcontrib><description>One of the most promising pathways to biomass-based, sustainable chemicals is the sugar platform that includes conversions of monosaccharides, disaccharides and polysaccharides, and their derivates, via biochemical and thermochemical processes. Hydrogenation and hydrogenolysis reactions are of particular significance amongst those thermochemical pathways. Nature produces many different unsaturated products, including C=C double bonds, in carbonyl groups in the structural aldoses and ketoses of cellulose and hemicellulose. This article describes a practical approach to respond to these challenges by applying an integrated development and optimization strategy beginning at laboratory scale, through piloting and demonstration scale, before building a commercial plant. Guidelines on how to approach specific hydrogenation problems, concepts and tools for the design, development and scaleup of catalytic hydrogenation processes are discussed.</description><identifier>ISSN: 0009-2460</identifier><identifier>EISSN: 1945-368X</identifier><language>eng</language><publisher>New York: Access Intelligence LLC</publisher><subject>Biomass ; Carbon ; Carbonyl groups ; Carbonyls ; Chemical engineering ; Conversion ; Disaccharides ; Feasibility studies ; Hydrogen ; Hydrogenation ; Hydrogenolysis ; Laboratories ; Monosaccharides ; Optimization ; Polysaccharides ; Raw materials ; Reactors ; Reynolds number</subject><ispartof>Chemical Engineering, 2022-12, Vol.129 (12), p.37-40</ispartof><rights>Copyright Access Intelligence LLC Dec 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2792604572?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>313,786,790,797,15343,36097,44398</link.rule.ids></links><search><creatorcontrib>Epp, Konstantin</creatorcontrib><creatorcontrib>Keller, Wolfgang</creatorcontrib><creatorcontrib>Labusch, Marc</creatorcontrib><creatorcontrib>Rojan, Peter</creatorcontrib><title>Scaling Up Hydrogenation Processes for Biomass Conversion</title><title>Chemical Engineering</title><description>One of the most promising pathways to biomass-based, sustainable chemicals is the sugar platform that includes conversions of monosaccharides, disaccharides and polysaccharides, and their derivates, via biochemical and thermochemical processes. Hydrogenation and hydrogenolysis reactions are of particular significance amongst those thermochemical pathways. Nature produces many different unsaturated products, including C=C double bonds, in carbonyl groups in the structural aldoses and ketoses of cellulose and hemicellulose. This article describes a practical approach to respond to these challenges by applying an integrated development and optimization strategy beginning at laboratory scale, through piloting and demonstration scale, before building a commercial plant. Guidelines on how to approach specific hydrogenation problems, concepts and tools for the design, development and scaleup of catalytic hydrogenation processes are discussed.</description><subject>Biomass</subject><subject>Carbon</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Chemical engineering</subject><subject>Conversion</subject><subject>Disaccharides</subject><subject>Feasibility studies</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Hydrogenolysis</subject><subject>Laboratories</subject><subject>Monosaccharides</subject><subject>Optimization</subject><subject>Polysaccharides</subject><subject>Raw materials</subject><subject>Reactors</subject><subject>Reynolds number</subject><issn>0009-2460</issn><issn>1945-368X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNys0KgkAUQOEhCrKfdxjaC9Ooo7NNCpdBBe1ksKsYNtfutaC3z0UP0Opw4JuIYGvjJIxMdp2KQCllQx0bNRcL5vu4Os1MIOypcl3rG3npZfG5ETbg3dCil0fCCpiBZY0kdy0-HLPM0b-BeAQrMatdx7D-dSk2h_05L8Ke8PkCHkqCHmngUqdWGxUnqY7-Ql8fLDdR</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Epp, Konstantin</creator><creator>Keller, Wolfgang</creator><creator>Labusch, Marc</creator><creator>Rojan, Peter</creator><general>Access Intelligence LLC</general><scope>0TT</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KB~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>20221201</creationdate><title>Scaling Up Hydrogenation Processes for Biomass Conversion</title><author>Epp, Konstantin ; Keller, Wolfgang ; Labusch, Marc ; Rojan, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_reports_27926045723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomass</topic><topic>Carbon</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Chemical engineering</topic><topic>Conversion</topic><topic>Disaccharides</topic><topic>Feasibility studies</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Hydrogenolysis</topic><topic>Laboratories</topic><topic>Monosaccharides</topic><topic>Optimization</topic><topic>Polysaccharides</topic><topic>Raw materials</topic><topic>Reactors</topic><topic>Reynolds number</topic><toplevel>online_resources</toplevel><creatorcontrib>Epp, Konstantin</creatorcontrib><creatorcontrib>Keller, Wolfgang</creatorcontrib><creatorcontrib>Labusch, Marc</creatorcontrib><creatorcontrib>Rojan, Peter</creatorcontrib><collection>News PRO</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Newsstand Professional</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Chemical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epp, Konstantin</au><au>Keller, Wolfgang</au><au>Labusch, Marc</au><au>Rojan, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling Up Hydrogenation Processes for Biomass Conversion</atitle><jtitle>Chemical Engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>129</volume><issue>12</issue><spage>37</spage><epage>40</epage><pages>37-40</pages><issn>0009-2460</issn><eissn>1945-368X</eissn><abstract>One of the most promising pathways to biomass-based, sustainable chemicals is the sugar platform that includes conversions of monosaccharides, disaccharides and polysaccharides, and their derivates, via biochemical and thermochemical processes. Hydrogenation and hydrogenolysis reactions are of particular significance amongst those thermochemical pathways. Nature produces many different unsaturated products, including C=C double bonds, in carbonyl groups in the structural aldoses and ketoses of cellulose and hemicellulose. This article describes a practical approach to respond to these challenges by applying an integrated development and optimization strategy beginning at laboratory scale, through piloting and demonstration scale, before building a commercial plant. Guidelines on how to approach specific hydrogenation problems, concepts and tools for the design, development and scaleup of catalytic hydrogenation processes are discussed.</abstract><cop>New York</cop><pub>Access Intelligence LLC</pub></addata></record>
fulltext fulltext
identifier ISSN: 0009-2460
ispartof Chemical Engineering, 2022-12, Vol.129 (12), p.37-40
issn 0009-2460
1945-368X
language eng
recordid cdi_proquest_reports_2792604572
source ABI/INFORM Global
subjects Biomass
Carbon
Carbonyl groups
Carbonyls
Chemical engineering
Conversion
Disaccharides
Feasibility studies
Hydrogen
Hydrogenation
Hydrogenolysis
Laboratories
Monosaccharides
Optimization
Polysaccharides
Raw materials
Reactors
Reynolds number
title Scaling Up Hydrogenation Processes for Biomass Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T21%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20Up%20Hydrogenation%20Processes%20for%20Biomass%20Conversion&rft.jtitle=Chemical%20Engineering&rft.au=Epp,%20Konstantin&rft.date=2022-12-01&rft.volume=129&rft.issue=12&rft.spage=37&rft.epage=40&rft.pages=37-40&rft.issn=0009-2460&rft.eissn=1945-368X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792604572%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_reports_27926045723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792604572&rft_id=info:pmid/&rfr_iscdi=true