Loading…

Ensemble modeling of very small ZnO nanoparticles

The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. U...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (2), p.498-505
Main Authors: NIEDERDRAENK, Franziska, SEUFERT, Knud, STAHL, Andreas, BHALERAO-PANAJKAR, Rohini S, MARATHE, Sonali, KULKARNI, Sulabha K, NEDER, Reinhard B, KUMPF, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3
cites cdi_FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3
container_end_page 505
container_issue 2
container_start_page 498
container_title Physical chemistry chemical physics : PCCP
container_volume 13
creator NIEDERDRAENK, Franziska
SEUFERT, Knud
STAHL, Andreas
BHALERAO-PANAJKAR, Rohini S
MARATHE, Sonali
KULKARNI, Sulabha K
NEDER, Reinhard B
KUMPF, Christian
description The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.
doi_str_mv 10.1039/c0cp00758g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963869159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818646675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3</originalsourceid><addsrcrecordid>eNqF0EtLAzEUhuEgitXqxh8gsxFBqJ4zuUyylKFWoVAXunEzZDJJGclcTFqh_97R1rp0dc7i4Vu8hFwg3CJQdWfA9AAZl8sDcoJM0IkCyQ73fyZG5DTGdwBAjvSYjFIEASpVJwSnbbRN6W3SdJX1dbtMOpd82rBJYqO9T97aRdLqtut1WNXG23hGjpz20Z7v7pi8Pkxf8sfJfDF7yu_nE0MlW004VJXTWVZphlLqFLkxHLRSklksJTrq0BkmXGrRMA7OZtIyx5RxlaygpGNyvd3tQ_extnFVNHU01nvd2m4dCyWoFAq5-ldKlIIJkfFB3mylCV2MwbqiD3Wjw6ZAKL5bFjnkzz8tZwO-3M2uy8ZWe_obbwBXO6Cj0d4F3Zo6_jkqBwQZ_QLhr3rX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>818646675</pqid></control><display><type>article</type><title>Ensemble modeling of very small ZnO nanoparticles</title><source>Royal Society of Chemistry</source><creator>NIEDERDRAENK, Franziska ; SEUFERT, Knud ; STAHL, Andreas ; BHALERAO-PANAJKAR, Rohini S ; MARATHE, Sonali ; KULKARNI, Sulabha K ; NEDER, Reinhard B ; KUMPF, Christian</creator><creatorcontrib>NIEDERDRAENK, Franziska ; SEUFERT, Knud ; STAHL, Andreas ; BHALERAO-PANAJKAR, Rohini S ; MARATHE, Sonali ; KULKARNI, Sulabha K ; NEDER, Reinhard B ; KUMPF, Christian</creatorcontrib><description>The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c0cp00758g</identifier><identifier>PMID: 21060929</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anisotropy ; Atomic structure ; Chemistry ; Colloidal state and disperse state ; Electronics ; Exact sciences and technology ; General and physical chemistry ; Mathematical models ; Metal Nanoparticles - chemistry ; Models, Molecular ; Nanoparticles ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Wurtzite ; X-Ray Diffraction ; X-rays ; Zinc oxide ; Zinc Oxide - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-01, Vol.13 (2), p.498-505</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3</citedby><cites>FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23829307$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21060929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>NIEDERDRAENK, Franziska</creatorcontrib><creatorcontrib>SEUFERT, Knud</creatorcontrib><creatorcontrib>STAHL, Andreas</creatorcontrib><creatorcontrib>BHALERAO-PANAJKAR, Rohini S</creatorcontrib><creatorcontrib>MARATHE, Sonali</creatorcontrib><creatorcontrib>KULKARNI, Sulabha K</creatorcontrib><creatorcontrib>NEDER, Reinhard B</creatorcontrib><creatorcontrib>KUMPF, Christian</creatorcontrib><title>Ensemble modeling of very small ZnO nanoparticles</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.</description><subject>Anisotropy</subject><subject>Atomic structure</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Mathematical models</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Models, Molecular</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Wurtzite</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><subject>Zinc oxide</subject><subject>Zinc Oxide - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUhuEgitXqxh8gsxFBqJ4zuUyylKFWoVAXunEzZDJJGclcTFqh_97R1rp0dc7i4Vu8hFwg3CJQdWfA9AAZl8sDcoJM0IkCyQ73fyZG5DTGdwBAjvSYjFIEASpVJwSnbbRN6W3SdJX1dbtMOpd82rBJYqO9T97aRdLqtut1WNXG23hGjpz20Z7v7pi8Pkxf8sfJfDF7yu_nE0MlW004VJXTWVZphlLqFLkxHLRSklksJTrq0BkmXGrRMA7OZtIyx5RxlaygpGNyvd3tQ_extnFVNHU01nvd2m4dCyWoFAq5-ldKlIIJkfFB3mylCV2MwbqiD3Wjw6ZAKL5bFjnkzz8tZwO-3M2uy8ZWe_obbwBXO6Cj0d4F3Zo6_jkqBwQZ_QLhr3rX</recordid><startdate>20110114</startdate><enddate>20110114</enddate><creator>NIEDERDRAENK, Franziska</creator><creator>SEUFERT, Knud</creator><creator>STAHL, Andreas</creator><creator>BHALERAO-PANAJKAR, Rohini S</creator><creator>MARATHE, Sonali</creator><creator>KULKARNI, Sulabha K</creator><creator>NEDER, Reinhard B</creator><creator>KUMPF, Christian</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110114</creationdate><title>Ensemble modeling of very small ZnO nanoparticles</title><author>NIEDERDRAENK, Franziska ; SEUFERT, Knud ; STAHL, Andreas ; BHALERAO-PANAJKAR, Rohini S ; MARATHE, Sonali ; KULKARNI, Sulabha K ; NEDER, Reinhard B ; KUMPF, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Atomic structure</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Mathematical models</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Models, Molecular</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Wurtzite</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><topic>Zinc oxide</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NIEDERDRAENK, Franziska</creatorcontrib><creatorcontrib>SEUFERT, Knud</creatorcontrib><creatorcontrib>STAHL, Andreas</creatorcontrib><creatorcontrib>BHALERAO-PANAJKAR, Rohini S</creatorcontrib><creatorcontrib>MARATHE, Sonali</creatorcontrib><creatorcontrib>KULKARNI, Sulabha K</creatorcontrib><creatorcontrib>NEDER, Reinhard B</creatorcontrib><creatorcontrib>KUMPF, Christian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NIEDERDRAENK, Franziska</au><au>SEUFERT, Knud</au><au>STAHL, Andreas</au><au>BHALERAO-PANAJKAR, Rohini S</au><au>MARATHE, Sonali</au><au>KULKARNI, Sulabha K</au><au>NEDER, Reinhard B</au><au>KUMPF, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble modeling of very small ZnO nanoparticles</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-01-14</date><risdate>2011</risdate><volume>13</volume><issue>2</issue><spage>498</spage><epage>505</epage><pages>498-505</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>ObjectType-Article-2</notes><notes>ObjectType-Feature-1</notes><abstract>The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21060929</pmid><doi>10.1039/c0cp00758g</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2011-01, Vol.13 (2), p.498-505
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_963869159
source Royal Society of Chemistry
subjects Anisotropy
Atomic structure
Chemistry
Colloidal state and disperse state
Electronics
Exact sciences and technology
General and physical chemistry
Mathematical models
Metal Nanoparticles - chemistry
Models, Molecular
Nanoparticles
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Wurtzite
X-Ray Diffraction
X-rays
Zinc oxide
Zinc Oxide - chemistry
title Ensemble modeling of very small ZnO nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T22%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20modeling%20of%20very%20small%20ZnO%20nanoparticles&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=NIEDERDRAENK,%20Franziska&rft.date=2011-01-14&rft.volume=13&rft.issue=2&rft.spage=498&rft.epage=505&rft.pages=498-505&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c0cp00758g&rft_dat=%3Cproquest_cross%3E818646675%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-50ddfa77da4188a215cc50a9984e1b81f3f1fc46f2e1c450fe78e4f49cfd8d0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=818646675&rft_id=info:pmid/21060929&rfr_iscdi=true