Loading…

Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions

Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as sm...

Full description

Saved in:
Bibliographic Details
Published in:European journal of cell biology 2012-04, Vol.91 (4), p.340-348
Main Authors: Franks, W. Trent, Linden, Arne H., Kunert, Britta, van Rossum, Barth-Jan, Oschkinat, Hartmut
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3
cites cdi_FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3
container_end_page 348
container_issue 4
container_start_page 340
container_title European journal of cell biology
container_volume 91
creator Franks, W. Trent
Linden, Arne H.
Kunert, Britta
van Rossum, Barth-Jan
Oschkinat, Hartmut
description Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future ‘big’ projects.
doi_str_mv 10.1016/j.ejcb.2011.09.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923958766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0171933511001749</els_id><sourcerecordid>923958766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwARYoO1YJHltOYokNqviTCkj8rFhYjj2pXCVOsVMkdtyBG3ISUrWwZDWa0XtPbz5CjoFmQCE_W2S4MFXGKEBGZUYp2yFjyKFMgclyl4wpFJBKzsWIHMS4oBREKeU-GbHBIwXAmLw-dY2zaex1j0mr586k2s8bTOLSee_8PLm_e0y6OmmxrYL2mCxD16PzMdHe_i7fn1-Nm68PzvcYtOld5-Mh2at1E_FoOyfk5eryeXqTzh6ub6cXs9RwIfpUaMEtgwoBZW5L1IiMFqYCDpZTlNRyCVYLpqtai6KqacnLmkLJTJHr3PAJOd3kDm3eVhh71bposGmGut0qKsm4FGWR54OSbZQmdDEGrNUyuFaHDwVUrZmqhVozVWumiko1MB1MJ9v4VdWi_bP8QhwE5xsBDk--OwwqGofeoHUBTa9s5_7L_wFiuonm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923958766</pqid></control><display><type>article</type><title>Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Franks, W. Trent ; Linden, Arne H. ; Kunert, Britta ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</creator><creatorcontrib>Franks, W. Trent ; Linden, Arne H. ; Kunert, Britta ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</creatorcontrib><description>Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future ‘big’ projects.</description><identifier>ISSN: 0171-9335</identifier><identifier>EISSN: 1618-1298</identifier><identifier>DOI: 10.1016/j.ejcb.2011.09.002</identifier><identifier>PMID: 22019511</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Animals ; Humans ; Ligands ; Magic-angle-spinning solid-state NMR ; Membrane proteins ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Nuclear Magnetic Resonance, Biomolecular - instrumentation ; Nuclear Magnetic Resonance, Biomolecular - methods ; Protein Binding - physiology ; Protein Structure, Tertiary - physiology</subject><ispartof>European journal of cell biology, 2012-04, Vol.91 (4), p.340-348</ispartof><rights>2011 Elsevier GmbH</rights><rights>Copyright © 2011 Elsevier GmbH. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3</citedby><cites>FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22019511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franks, W. Trent</creatorcontrib><creatorcontrib>Linden, Arne H.</creatorcontrib><creatorcontrib>Kunert, Britta</creatorcontrib><creatorcontrib>van Rossum, Barth-Jan</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><title>Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions</title><title>European journal of cell biology</title><addtitle>Eur J Cell Biol</addtitle><description>Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future ‘big’ projects.</description><subject>Animals</subject><subject>Humans</subject><subject>Ligands</subject><subject>Magic-angle-spinning solid-state NMR</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Nuclear Magnetic Resonance, Biomolecular - instrumentation</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Tertiary - physiology</subject><issn>0171-9335</issn><issn>1618-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EoqVwARYoO1YJHltOYokNqviTCkj8rFhYjj2pXCVOsVMkdtyBG3ISUrWwZDWa0XtPbz5CjoFmQCE_W2S4MFXGKEBGZUYp2yFjyKFMgclyl4wpFJBKzsWIHMS4oBREKeU-GbHBIwXAmLw-dY2zaex1j0mr586k2s8bTOLSee_8PLm_e0y6OmmxrYL2mCxD16PzMdHe_i7fn1-Nm68PzvcYtOld5-Mh2at1E_FoOyfk5eryeXqTzh6ub6cXs9RwIfpUaMEtgwoBZW5L1IiMFqYCDpZTlNRyCVYLpqtai6KqacnLmkLJTJHr3PAJOd3kDm3eVhh71bposGmGut0qKsm4FGWR54OSbZQmdDEGrNUyuFaHDwVUrZmqhVozVWumiko1MB1MJ9v4VdWi_bP8QhwE5xsBDk--OwwqGofeoHUBTa9s5_7L_wFiuonm</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Franks, W. Trent</creator><creator>Linden, Arne H.</creator><creator>Kunert, Britta</creator><creator>van Rossum, Barth-Jan</creator><creator>Oschkinat, Hartmut</creator><general>Elsevier GmbH</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions</title><author>Franks, W. Trent ; Linden, Arne H. ; Kunert, Britta ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Ligands</topic><topic>Magic-angle-spinning solid-state NMR</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Nuclear Magnetic Resonance, Biomolecular - instrumentation</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Tertiary - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franks, W. Trent</creatorcontrib><creatorcontrib>Linden, Arne H.</creatorcontrib><creatorcontrib>Kunert, Britta</creatorcontrib><creatorcontrib>van Rossum, Barth-Jan</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franks, W. Trent</au><au>Linden, Arne H.</au><au>Kunert, Britta</au><au>van Rossum, Barth-Jan</au><au>Oschkinat, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions</atitle><jtitle>European journal of cell biology</jtitle><addtitle>Eur J Cell Biol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>91</volume><issue>4</issue><spage>340</spage><epage>348</epage><pages>340-348</pages><issn>0171-9335</issn><eissn>1618-1298</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-3</notes><notes>content type line 23</notes><notes>ObjectType-Review-1</notes><abstract>Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state NMR and femtosecond X-ray protein nanocrystallography. These new techniques all seek to investigate non-crystalline, native-like biological material. Solid-state NMR is a relatively young technique that has just proven its capabilities for de novo structure determination of model proteins. Further developments promise great potential for investigations on functional biological systems such as membrane-integrated receptors and channels, and macromolecular complexes attached to cytoskeletal proteins. Here, we review the development and applications of solid-state NMR from the first proof-of-principle investigations to mature structure determination projects, including membrane proteins. We describe the development of the methodology by looking at examples in detail and provide an outlook towards future ‘big’ projects.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>22019511</pmid><doi>10.1016/j.ejcb.2011.09.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-9335
ispartof European journal of cell biology, 2012-04, Vol.91 (4), p.340-348
issn 0171-9335
1618-1298
language eng
recordid cdi_proquest_miscellaneous_923958766
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Humans
Ligands
Magic-angle-spinning solid-state NMR
Membrane proteins
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Nuclear Magnetic Resonance, Biomolecular - instrumentation
Nuclear Magnetic Resonance, Biomolecular - methods
Protein Binding - physiology
Protein Structure, Tertiary - physiology
title Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T13%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20magic-angle%20spinning%20NMR%20of%20membrane%20proteins%20and%20protein%E2%80%93ligand%20interactions&rft.jtitle=European%20journal%20of%20cell%20biology&rft.au=Franks,%20W.%20Trent&rft.date=2012-04&rft.volume=91&rft.issue=4&rft.spage=340&rft.epage=348&rft.pages=340-348&rft.issn=0171-9335&rft.eissn=1618-1298&rft_id=info:doi/10.1016/j.ejcb.2011.09.002&rft_dat=%3Cproquest_cross%3E923958766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-5a53d21be1e96d8eaee207cb131d30e90d391da52abfa57bf0838f0182c76a6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923958766&rft_id=info:pmid/22019511&rfr_iscdi=true