Loading…

The Majority of Animal Genes Are Required for Wild-Type Fitness

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2012-02, Vol.148 (4), p.792-802
Main Authors: Ramani, Arun K., Chuluunbaatar, Tungalag, Verster, Adrian J., Na, Hong, Vu, Victoria, Pelte, Nadège, Wannissorn, Nattha, Jiao, Alan, Fraser, Andrew G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473
cites cdi_FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473
container_end_page 802
container_issue 4
container_start_page 792
container_title Cell
container_volume 148
creator Ramani, Arun K.
Chuluunbaatar, Tungalag
Verster, Adrian J.
Na, Hong
Vu, Victoria
Pelte, Nadège
Wannissorn, Nattha
Jiao, Alan
Fraser, Andrew G.
description Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes. [Display omitted] ► Population-level phenotyping shows most C. elegans genes are needed for normal growth ► In one environment, more genes are needed for wild-type fitness in animals than yeast How much redundancy is built into genetic networks? Though the relative dearth of phenotypes yielded by systematic screens in eukaryotes to date had suggested a high degree of robustness, an assay measuring fitness cost over multiple generations in C. elegans indicates instead that the majority of genes contribute individually to organism function.
doi_str_mv 10.1016/j.cell.2012.01.019
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_922506234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867412000840</els_id><sourcerecordid>922506234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWqsv4EFz87R1kuxuEhCkFKuCImjFY9huJpqy7dZkK_TtTWn1KAzM5ft_Zj5CzhgMGLDyajaosWkGHBgfAEuj90iPgZZZziTfJz0AzTNVyvyIHMc4AwBVFMUhOeJc5CzPdY_cTD6RPlWzNvhuTVtHhws_rxp6hwuMdBiQvuDXyge01LWBvvvGZpP1EunYd4mIJ-TAVU3E093uk7fx7WR0nz0-3z2Mho9ZnXPRZQU6tFMNTpYWFReomFZOCVEwKxVqB7ISIMEWiimUtc1hCiWkI3ltq1yKPrnc9i5D-7XC2Jm5j5v3qwW2q2g05wWU6a1E8i1ZhzbGgM4sQ3oprA0Ds_FmZmYTNBtvBlganULnu_rVdI72L_IrKgEXW8BVrak-go_m7TU1lEkqaCFUIq63BCYN3x6DibXHRY022as7Y1v_3wU_zMyFdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922506234</pqid></control><display><type>article</type><title>The Majority of Animal Genes Are Required for Wild-Type Fitness</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ramani, Arun K. ; Chuluunbaatar, Tungalag ; Verster, Adrian J. ; Na, Hong ; Vu, Victoria ; Pelte, Nadège ; Wannissorn, Nattha ; Jiao, Alan ; Fraser, Andrew G.</creator><creatorcontrib>Ramani, Arun K. ; Chuluunbaatar, Tungalag ; Verster, Adrian J. ; Na, Hong ; Vu, Victoria ; Pelte, Nadège ; Wannissorn, Nattha ; Jiao, Alan ; Fraser, Andrew G.</creatorcontrib><description>Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes. [Display omitted] ► Population-level phenotyping shows most C. elegans genes are needed for normal growth ► In one environment, more genes are needed for wild-type fitness in animals than yeast How much redundancy is built into genetic networks? Though the relative dearth of phenotypes yielded by systematic screens in eukaryotes to date had suggested a high degree of robustness, an assay measuring fitness cost over multiple generations in C. elegans indicates instead that the majority of genes contribute individually to organism function.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2012.01.019</identifier><identifier>PMID: 22341449</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Caenorhabditis elegans - genetics ; environmental factors ; Escherichia coli - genetics ; eukaryotic cells ; Gene Regulatory Networks ; genes ; Genetic Fitness ; mutation ; Phenotype ; population ; RNA Interference ; yeasts</subject><ispartof>Cell, 2012-02, Vol.148 (4), p.792-802</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473</citedby><cites>FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22341449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramani, Arun K.</creatorcontrib><creatorcontrib>Chuluunbaatar, Tungalag</creatorcontrib><creatorcontrib>Verster, Adrian J.</creatorcontrib><creatorcontrib>Na, Hong</creatorcontrib><creatorcontrib>Vu, Victoria</creatorcontrib><creatorcontrib>Pelte, Nadège</creatorcontrib><creatorcontrib>Wannissorn, Nattha</creatorcontrib><creatorcontrib>Jiao, Alan</creatorcontrib><creatorcontrib>Fraser, Andrew G.</creatorcontrib><title>The Majority of Animal Genes Are Required for Wild-Type Fitness</title><title>Cell</title><addtitle>Cell</addtitle><description>Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes. [Display omitted] ► Population-level phenotyping shows most C. elegans genes are needed for normal growth ► In one environment, more genes are needed for wild-type fitness in animals than yeast How much redundancy is built into genetic networks? Though the relative dearth of phenotypes yielded by systematic screens in eukaryotes to date had suggested a high degree of robustness, an assay measuring fitness cost over multiple generations in C. elegans indicates instead that the majority of genes contribute individually to organism function.</description><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>environmental factors</subject><subject>Escherichia coli - genetics</subject><subject>eukaryotic cells</subject><subject>Gene Regulatory Networks</subject><subject>genes</subject><subject>Genetic Fitness</subject><subject>mutation</subject><subject>Phenotype</subject><subject>population</subject><subject>RNA Interference</subject><subject>yeasts</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWqsv4EFz87R1kuxuEhCkFKuCImjFY9huJpqy7dZkK_TtTWn1KAzM5ft_Zj5CzhgMGLDyajaosWkGHBgfAEuj90iPgZZZziTfJz0AzTNVyvyIHMc4AwBVFMUhOeJc5CzPdY_cTD6RPlWzNvhuTVtHhws_rxp6hwuMdBiQvuDXyge01LWBvvvGZpP1EunYd4mIJ-TAVU3E093uk7fx7WR0nz0-3z2Mho9ZnXPRZQU6tFMNTpYWFReomFZOCVEwKxVqB7ISIMEWiimUtc1hCiWkI3ltq1yKPrnc9i5D-7XC2Jm5j5v3qwW2q2g05wWU6a1E8i1ZhzbGgM4sQ3oprA0Ds_FmZmYTNBtvBlganULnu_rVdI72L_IrKgEXW8BVrak-go_m7TU1lEkqaCFUIq63BCYN3x6DibXHRY022as7Y1v_3wU_zMyFdg</recordid><startdate>20120217</startdate><enddate>20120217</enddate><creator>Ramani, Arun K.</creator><creator>Chuluunbaatar, Tungalag</creator><creator>Verster, Adrian J.</creator><creator>Na, Hong</creator><creator>Vu, Victoria</creator><creator>Pelte, Nadège</creator><creator>Wannissorn, Nattha</creator><creator>Jiao, Alan</creator><creator>Fraser, Andrew G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120217</creationdate><title>The Majority of Animal Genes Are Required for Wild-Type Fitness</title><author>Ramani, Arun K. ; Chuluunbaatar, Tungalag ; Verster, Adrian J. ; Na, Hong ; Vu, Victoria ; Pelte, Nadège ; Wannissorn, Nattha ; Jiao, Alan ; Fraser, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>environmental factors</topic><topic>Escherichia coli - genetics</topic><topic>eukaryotic cells</topic><topic>Gene Regulatory Networks</topic><topic>genes</topic><topic>Genetic Fitness</topic><topic>mutation</topic><topic>Phenotype</topic><topic>population</topic><topic>RNA Interference</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramani, Arun K.</creatorcontrib><creatorcontrib>Chuluunbaatar, Tungalag</creatorcontrib><creatorcontrib>Verster, Adrian J.</creatorcontrib><creatorcontrib>Na, Hong</creatorcontrib><creatorcontrib>Vu, Victoria</creatorcontrib><creatorcontrib>Pelte, Nadège</creatorcontrib><creatorcontrib>Wannissorn, Nattha</creatorcontrib><creatorcontrib>Jiao, Alan</creatorcontrib><creatorcontrib>Fraser, Andrew G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramani, Arun K.</au><au>Chuluunbaatar, Tungalag</au><au>Verster, Adrian J.</au><au>Na, Hong</au><au>Vu, Victoria</au><au>Pelte, Nadège</au><au>Wannissorn, Nattha</au><au>Jiao, Alan</au><au>Fraser, Andrew G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Majority of Animal Genes Are Required for Wild-Type Fitness</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2012-02-17</date><risdate>2012</risdate><volume>148</volume><issue>4</issue><spage>792</spage><epage>802</epage><pages>792-802</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><notes>http://dx.doi.org/10.1016/j.cell.2012.01.019</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes. [Display omitted] ► Population-level phenotyping shows most C. elegans genes are needed for normal growth ► In one environment, more genes are needed for wild-type fitness in animals than yeast How much redundancy is built into genetic networks? Though the relative dearth of phenotypes yielded by systematic screens in eukaryotes to date had suggested a high degree of robustness, an assay measuring fitness cost over multiple generations in C. elegans indicates instead that the majority of genes contribute individually to organism function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22341449</pmid><doi>10.1016/j.cell.2012.01.019</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2012-02, Vol.148 (4), p.792-802
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_922506234
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Caenorhabditis elegans - genetics
environmental factors
Escherichia coli - genetics
eukaryotic cells
Gene Regulatory Networks
genes
Genetic Fitness
mutation
Phenotype
population
RNA Interference
yeasts
title The Majority of Animal Genes Are Required for Wild-Type Fitness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Majority%20of%20Animal%20Genes%20Are%20Required%20for%20Wild-Type%20Fitness&rft.jtitle=Cell&rft.au=Ramani,%20Arun%C2%A0K.&rft.date=2012-02-17&rft.volume=148&rft.issue=4&rft.spage=792&rft.epage=802&rft.pages=792-802&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2012.01.019&rft_dat=%3Cproquest_cross%3E922506234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-5efedb90f76de823e8198f83351d78e9f07a3070d5818e7cd40b0604142cda473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922506234&rft_id=info:pmid/22341449&rfr_iscdi=true