Loading…

Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data

ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study,...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2011-07, Vol.400 (10), p.3247-3260
Main Authors: Lasue, J., Wiens, R. C., Stepinski, T. F., Forni, O., Clegg, S. M., Maurice, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313
cites cdi_FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313
container_end_page 3260
container_issue 10
container_start_page 3247
container_title Analytical and bioanalytical chemistry
container_volume 400
creator Lasue, J.
Wiens, R. C.
Stepinski, T. F.
Forni, O.
Clegg, S. M.
Maurice, S.
description ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon’s map projection technique. We demonstrate that the Sammon’s map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon’s map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon’s map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator. Figure Sammon’s map showing the best 2D representation of a set of LIBS spectra.
doi_str_mv 10.1007/s00216-011-4747-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_919949270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A395137919</galeid><sourcerecordid>A395137919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEoj_wAGyQd7BJ8diO7bBrryhUuoIFsLYcZ9K6SuxgJ5Xg6fFtSpdFXtgaf-doZk5VvQF6BpSqD5lSBrKmALVQQtX8WXUMEnTNZEOfP74FO6pOcr6lFBoN8mV1xIBzEFofV3dfYxh9QJvIZOfZh2uyoLsJ_teKZIiJ9Hax5M7n1Y7-j118DMSGnrhxzQumA29zxpwnDAuJA9lfXXy_F30kxW_0btMskexucNrZ6f7zVfVisGPG1w_3afXz8tOP3Zd6_-3z1e58Xzsh1FKmoozbrhFIBxg0NrQHrrtGM9FqRaXsQFJ03dBpLlmvG-S8p8C7HrQSHPhp9W7znVMsE-XFTD47HEcbMK7ZtNC2omWK_pcsfkIrJppCvn-ShEIqkJyLgp5t6LUd0fgwxCVZV06Pk3cx4OBL_Zy3DXBVeikC2AQuxZwTDmZOfrLptwFqDpmbLXNTMjeHzA0vmrcP_azdhP2j4l_IBWAbkOdDYJjMbVxTKHt_wvUvpma1xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744716334</pqid></control><display><type>article</type><title>Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data</title><source>Springer Link</source><creator>Lasue, J. ; Wiens, R. C. ; Stepinski, T. F. ; Forni, O. ; Clegg, S. M. ; Maurice, S.</creator><creatorcontrib>Lasue, J. ; Wiens, R. C. ; Stepinski, T. F. ; Forni, O. ; Clegg, S. M. ; Maurice, S. ; ChemCam team</creatorcontrib><description>ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon’s map projection technique. We demonstrate that the Sammon’s map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon’s map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon’s map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator. Figure Sammon’s map showing the best 2D representation of a set of LIBS spectra.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-011-4747-3</identifier><identifier>PMID: 21331488</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analytical Chemistry ; Assessments ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Clustering ; Data visualization ; Entropy ; Food Science ; Laboratory Medicine ; Mars (Planet) ; Mars probes ; Methods ; Monitoring/Environmental Analysis ; Nonlinearity ; Original Paper ; Projection ; Representations ; Two dimensional ; Visualization (Computers)</subject><ispartof>Analytical and bioanalytical chemistry, 2011-07, Vol.400 (10), p.3247-3260</ispartof><rights>Springer-Verlag 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313</citedby><cites>FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21331488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Wiens, R. C.</creatorcontrib><creatorcontrib>Stepinski, T. F.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>ChemCam team</creatorcontrib><title>Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon’s map projection technique. We demonstrate that the Sammon’s map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon’s map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon’s map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator. Figure Sammon’s map showing the best 2D representation of a set of LIBS spectra.</description><subject>Analytical Chemistry</subject><subject>Assessments</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clustering</subject><subject>Data visualization</subject><subject>Entropy</subject><subject>Food Science</subject><subject>Laboratory Medicine</subject><subject>Mars (Planet)</subject><subject>Mars probes</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Projection</subject><subject>Representations</subject><subject>Two dimensional</subject><subject>Visualization (Computers)</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQhSMEoj_wAGyQd7BJ8diO7bBrryhUuoIFsLYcZ9K6SuxgJ5Xg6fFtSpdFXtgaf-doZk5VvQF6BpSqD5lSBrKmALVQQtX8WXUMEnTNZEOfP74FO6pOcr6lFBoN8mV1xIBzEFofV3dfYxh9QJvIZOfZh2uyoLsJ_teKZIiJ9Hax5M7n1Y7-j118DMSGnrhxzQumA29zxpwnDAuJA9lfXXy_F30kxW_0btMskexucNrZ6f7zVfVisGPG1w_3afXz8tOP3Zd6_-3z1e58Xzsh1FKmoozbrhFIBxg0NrQHrrtGM9FqRaXsQFJ03dBpLlmvG-S8p8C7HrQSHPhp9W7znVMsE-XFTD47HEcbMK7ZtNC2omWK_pcsfkIrJppCvn-ShEIqkJyLgp5t6LUd0fgwxCVZV06Pk3cx4OBL_Zy3DXBVeikC2AQuxZwTDmZOfrLptwFqDpmbLXNTMjeHzA0vmrcP_azdhP2j4l_IBWAbkOdDYJjMbVxTKHt_wvUvpma1xQ</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Lasue, J.</creator><creator>Wiens, R. C.</creator><creator>Stepinski, T. F.</creator><creator>Forni, O.</creator><creator>Clegg, S. M.</creator><creator>Maurice, S.</creator><general>Springer-Verlag</general><general>Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20110701</creationdate><title>Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data</title><author>Lasue, J. ; Wiens, R. C. ; Stepinski, T. F. ; Forni, O. ; Clegg, S. M. ; Maurice, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical Chemistry</topic><topic>Assessments</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clustering</topic><topic>Data visualization</topic><topic>Entropy</topic><topic>Food Science</topic><topic>Laboratory Medicine</topic><topic>Mars (Planet)</topic><topic>Mars probes</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Projection</topic><topic>Representations</topic><topic>Two dimensional</topic><topic>Visualization (Computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasue, J.</creatorcontrib><creatorcontrib>Wiens, R. C.</creatorcontrib><creatorcontrib>Stepinski, T. F.</creatorcontrib><creatorcontrib>Forni, O.</creatorcontrib><creatorcontrib>Clegg, S. M.</creatorcontrib><creatorcontrib>Maurice, S.</creatorcontrib><creatorcontrib>ChemCam team</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasue, J.</au><au>Wiens, R. C.</au><au>Stepinski, T. F.</au><au>Forni, O.</au><au>Clegg, S. M.</au><au>Maurice, S.</au><aucorp>ChemCam team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>400</volume><issue>10</issue><spage>3247</spage><epage>3260</epage><pages>3247-3260</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon’s map projection technique. We demonstrate that the Sammon’s map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon’s map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon’s map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator. Figure Sammon’s map showing the best 2D representation of a set of LIBS spectra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21331488</pmid><doi>10.1007/s00216-011-4747-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2011-07, Vol.400 (10), p.3247-3260
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_919949270
source Springer Link
subjects Analytical Chemistry
Assessments
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Clustering
Data visualization
Entropy
Food Science
Laboratory Medicine
Mars (Planet)
Mars probes
Methods
Monitoring/Environmental Analysis
Nonlinearity
Original Paper
Projection
Representations
Two dimensional
Visualization (Computers)
title Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T06%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20mapping%20technique%20for%20data%20visualization%20and%20clustering%20assessment%20of%20LIBS%20data:%20application%20to%20ChemCam%20data&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Lasue,%20J.&rft.aucorp=ChemCam%20team&rft.date=2011-07-01&rft.volume=400&rft.issue=10&rft.spage=3247&rft.epage=3260&rft.pages=3247-3260&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-011-4747-3&rft_dat=%3Cgale_proqu%3EA395137919%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-47023ab54e0f1f8e50d138b5824987066b160ecbfb8362d85e33d013bd1874313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744716334&rft_id=info:pmid/21331488&rft_galeid=A395137919&rfr_iscdi=true