Loading…

Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator

Experiments have been performed on a relativistic magnetron driven at e-beam accelerator peak parameters: voltage = -0.4 MV, current = 16 kA, and pulselength = 0.5 /spl mu/s. The magnetron is a six-vane device operating at about 1 GHz with extraction from two cavities. For equal power in both extrac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2002-06, Vol.30 (3), p.947-955
Main Authors: Lopez, M.R., Gilgenbach, R.M., Jordan, D.W., Anderson, S.A., Johnston, M.D., Keyser, M.W., Miyake, H., Peters, C.W., Jones, M.C., Bogdan Neculaes, V., Yue Ying Lau, Spencer, T.A., Luginsland, J.W., Haworth, M.D., Lemke, R.W., Price, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213
cites cdi_FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213
container_end_page 955
container_issue 3
container_start_page 947
container_title IEEE transactions on plasma science
container_volume 30
creator Lopez, M.R.
Gilgenbach, R.M.
Jordan, D.W.
Anderson, S.A.
Johnston, M.D.
Keyser, M.W.
Miyake, H.
Peters, C.W.
Jones, M.C.
Bogdan Neculaes, V.
Yue Ying Lau
Spencer, T.A.
Luginsland, J.W.
Haworth, M.D.
Lemke, R.W.
Price, D.
description Experiments have been performed on a relativistic magnetron driven at e-beam accelerator peak parameters: voltage = -0.4 MV, current = 16 kA, and pulselength = 0.5 /spl mu/s. The magnetron is a six-vane device operating at about 1 GHz with extraction from two cavities. For equal power in both extraction waveguides, the peak microwave power of this device is between 200 and 300 MW. Microwave pulse-shortening limits pulselengths to the range of 10-100 ns. Time-frequency analysis of microwave emission indicates operation at about 1.03 GHz, close to the pi mode frequency identified from cold tests and the three-dimensional MAGIC code. Two cold cathodes were tested: 1) an emitting aluminum knob in the vane region with no endcap and 2) an extended cathode with a graphite fiber emission region in the vanes and endcap outside the vanes. Electron endloss current has been measured for the two cathodes. With no endcap, the cathode exhibited endloss current fraction up to 50% of the total; with one endcap, the cathode reduced the endloss current fraction to as little as 12%. Both cathodes produced peak total-electronic efficiency in the range of 14%-21%.
doi_str_mv 10.1109/TPS.2002.801543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907958924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1158329</ieee_id><sourcerecordid>28247217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213</originalsourceid><addsrcrecordid>eNqNkctr20AQxpfQQFwn5xxyET20Jzkz-_DuHItJ00IggTyuy0oepQqWlO7KBv_3WaNAoYe2pznM75vH9wlxjrBABLp8uLtfSAC5cIBGqyMxQ1JUkrLmg5gBkCqVQ3UiPqb0AoDagJyJp1UYfw5rLrhpuB5TMfRFKCJvwtju2jS2ddGF557HmBvr2O64L6p9Rrq2jkPieujXBZcVh64Idc0bjmEc4qk4bsIm8dl7nYvHb1cPq-_lze31j9XXm7LWiGOpnbFGBzSWlpaoAqW5IUnaOTCBGnQEdYVrckRKVkZqZSE_qa2kiiSqufgyzX2Nw68tp9F3bcpXbELPwzZ5AkvGUdbNxee_ktJZrdHCf4Ayr0f7b9CCQ6llBj_9Ab4M29hnXzySwSUtJWXocoIOtqbIjX-NbRfi3iP4Q8A-B-wPAfsp4Ky4mBQtM_-m0TiV570BUkadwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195169629</pqid></control><display><type>article</type><title>Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lopez, M.R. ; Gilgenbach, R.M. ; Jordan, D.W. ; Anderson, S.A. ; Johnston, M.D. ; Keyser, M.W. ; Miyake, H. ; Peters, C.W. ; Jones, M.C. ; Bogdan Neculaes, V. ; Yue Ying Lau ; Spencer, T.A. ; Luginsland, J.W. ; Haworth, M.D. ; Lemke, R.W. ; Price, D.</creator><creatorcontrib>Lopez, M.R. ; Gilgenbach, R.M. ; Jordan, D.W. ; Anderson, S.A. ; Johnston, M.D. ; Keyser, M.W. ; Miyake, H. ; Peters, C.W. ; Jones, M.C. ; Bogdan Neculaes, V. ; Yue Ying Lau ; Spencer, T.A. ; Luginsland, J.W. ; Haworth, M.D. ; Lemke, R.W. ; Price, D.</creatorcontrib><description>Experiments have been performed on a relativistic magnetron driven at e-beam accelerator peak parameters: voltage = -0.4 MV, current = 16 kA, and pulselength = 0.5 /spl mu/s. The magnetron is a six-vane device operating at about 1 GHz with extraction from two cavities. For equal power in both extraction waveguides, the peak microwave power of this device is between 200 and 300 MW. Microwave pulse-shortening limits pulselengths to the range of 10-100 ns. Time-frequency analysis of microwave emission indicates operation at about 1.03 GHz, close to the pi mode frequency identified from cold tests and the three-dimensional MAGIC code. Two cold cathodes were tested: 1) an emitting aluminum knob in the vane region with no endcap and 2) an extended cathode with a graphite fiber emission region in the vanes and endcap outside the vanes. Electron endloss current has been measured for the two cathodes. With no endcap, the cathode exhibited endloss current fraction up to 50% of the total; with one endcap, the cathode reduced the endloss current fraction to as little as 12%. Both cathodes produced peak total-electronic efficiency in the range of 14%-21%.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2002.801543</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Accelerator magnets ; Accelerators ; Aluminum ; Blades ; Cathodes ; Devices ; Electric potential ; Extraction ; Instruments ; Magnetic devices ; Microwave devices ; Microwaves ; Particle physics ; Testing ; Time frequency analysis ; Vanes ; Voltage</subject><ispartof>IEEE transactions on plasma science, 2002-06, Vol.30 (3), p.947-955</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213</citedby><cites>FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1158329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,55147</link.rule.ids></links><search><creatorcontrib>Lopez, M.R.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><creatorcontrib>Jordan, D.W.</creatorcontrib><creatorcontrib>Anderson, S.A.</creatorcontrib><creatorcontrib>Johnston, M.D.</creatorcontrib><creatorcontrib>Keyser, M.W.</creatorcontrib><creatorcontrib>Miyake, H.</creatorcontrib><creatorcontrib>Peters, C.W.</creatorcontrib><creatorcontrib>Jones, M.C.</creatorcontrib><creatorcontrib>Bogdan Neculaes, V.</creatorcontrib><creatorcontrib>Yue Ying Lau</creatorcontrib><creatorcontrib>Spencer, T.A.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Haworth, M.D.</creatorcontrib><creatorcontrib>Lemke, R.W.</creatorcontrib><creatorcontrib>Price, D.</creatorcontrib><title>Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Experiments have been performed on a relativistic magnetron driven at e-beam accelerator peak parameters: voltage = -0.4 MV, current = 16 kA, and pulselength = 0.5 /spl mu/s. The magnetron is a six-vane device operating at about 1 GHz with extraction from two cavities. For equal power in both extraction waveguides, the peak microwave power of this device is between 200 and 300 MW. Microwave pulse-shortening limits pulselengths to the range of 10-100 ns. Time-frequency analysis of microwave emission indicates operation at about 1.03 GHz, close to the pi mode frequency identified from cold tests and the three-dimensional MAGIC code. Two cold cathodes were tested: 1) an emitting aluminum knob in the vane region with no endcap and 2) an extended cathode with a graphite fiber emission region in the vanes and endcap outside the vanes. Electron endloss current has been measured for the two cathodes. With no endcap, the cathode exhibited endloss current fraction up to 50% of the total; with one endcap, the cathode reduced the endloss current fraction to as little as 12%. Both cathodes produced peak total-electronic efficiency in the range of 14%-21%.</description><subject>Acceleration</subject><subject>Accelerator magnets</subject><subject>Accelerators</subject><subject>Aluminum</subject><subject>Blades</subject><subject>Cathodes</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Extraction</subject><subject>Instruments</subject><subject>Magnetic devices</subject><subject>Microwave devices</subject><subject>Microwaves</subject><subject>Particle physics</subject><subject>Testing</subject><subject>Time frequency analysis</subject><subject>Vanes</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkctr20AQxpfQQFwn5xxyET20Jzkz-_DuHItJ00IggTyuy0oepQqWlO7KBv_3WaNAoYe2pznM75vH9wlxjrBABLp8uLtfSAC5cIBGqyMxQ1JUkrLmg5gBkCqVQ3UiPqb0AoDagJyJp1UYfw5rLrhpuB5TMfRFKCJvwtju2jS2ddGF557HmBvr2O64L6p9Rrq2jkPieujXBZcVh64Idc0bjmEc4qk4bsIm8dl7nYvHb1cPq-_lze31j9XXm7LWiGOpnbFGBzSWlpaoAqW5IUnaOTCBGnQEdYVrckRKVkZqZSE_qa2kiiSqufgyzX2Nw68tp9F3bcpXbELPwzZ5AkvGUdbNxee_ktJZrdHCf4Ayr0f7b9CCQ6llBj_9Ab4M29hnXzySwSUtJWXocoIOtqbIjX-NbRfi3iP4Q8A-B-wPAfsp4Ky4mBQtM_-m0TiV570BUkadwQ</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Lopez, M.R.</creator><creator>Gilgenbach, R.M.</creator><creator>Jordan, D.W.</creator><creator>Anderson, S.A.</creator><creator>Johnston, M.D.</creator><creator>Keyser, M.W.</creator><creator>Miyake, H.</creator><creator>Peters, C.W.</creator><creator>Jones, M.C.</creator><creator>Bogdan Neculaes, V.</creator><creator>Yue Ying Lau</creator><creator>Spencer, T.A.</creator><creator>Luginsland, J.W.</creator><creator>Haworth, M.D.</creator><creator>Lemke, R.W.</creator><creator>Price, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator</title><author>Lopez, M.R. ; Gilgenbach, R.M. ; Jordan, D.W. ; Anderson, S.A. ; Johnston, M.D. ; Keyser, M.W. ; Miyake, H. ; Peters, C.W. ; Jones, M.C. ; Bogdan Neculaes, V. ; Yue Ying Lau ; Spencer, T.A. ; Luginsland, J.W. ; Haworth, M.D. ; Lemke, R.W. ; Price, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acceleration</topic><topic>Accelerator magnets</topic><topic>Accelerators</topic><topic>Aluminum</topic><topic>Blades</topic><topic>Cathodes</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Extraction</topic><topic>Instruments</topic><topic>Magnetic devices</topic><topic>Microwave devices</topic><topic>Microwaves</topic><topic>Particle physics</topic><topic>Testing</topic><topic>Time frequency analysis</topic><topic>Vanes</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, M.R.</creatorcontrib><creatorcontrib>Gilgenbach, R.M.</creatorcontrib><creatorcontrib>Jordan, D.W.</creatorcontrib><creatorcontrib>Anderson, S.A.</creatorcontrib><creatorcontrib>Johnston, M.D.</creatorcontrib><creatorcontrib>Keyser, M.W.</creatorcontrib><creatorcontrib>Miyake, H.</creatorcontrib><creatorcontrib>Peters, C.W.</creatorcontrib><creatorcontrib>Jones, M.C.</creatorcontrib><creatorcontrib>Bogdan Neculaes, V.</creatorcontrib><creatorcontrib>Yue Ying Lau</creatorcontrib><creatorcontrib>Spencer, T.A.</creatorcontrib><creatorcontrib>Luginsland, J.W.</creatorcontrib><creatorcontrib>Haworth, M.D.</creatorcontrib><creatorcontrib>Lemke, R.W.</creatorcontrib><creatorcontrib>Price, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez, M.R.</au><au>Gilgenbach, R.M.</au><au>Jordan, D.W.</au><au>Anderson, S.A.</au><au>Johnston, M.D.</au><au>Keyser, M.W.</au><au>Miyake, H.</au><au>Peters, C.W.</au><au>Jones, M.C.</au><au>Bogdan Neculaes, V.</au><au>Yue Ying Lau</au><au>Spencer, T.A.</au><au>Luginsland, J.W.</au><au>Haworth, M.D.</au><au>Lemke, R.W.</au><au>Price, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>30</volume><issue>3</issue><spage>947</spage><epage>955</epage><pages>947-955</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>Experiments have been performed on a relativistic magnetron driven at e-beam accelerator peak parameters: voltage = -0.4 MV, current = 16 kA, and pulselength = 0.5 /spl mu/s. The magnetron is a six-vane device operating at about 1 GHz with extraction from two cavities. For equal power in both extraction waveguides, the peak microwave power of this device is between 200 and 300 MW. Microwave pulse-shortening limits pulselengths to the range of 10-100 ns. Time-frequency analysis of microwave emission indicates operation at about 1.03 GHz, close to the pi mode frequency identified from cold tests and the three-dimensional MAGIC code. Two cold cathodes were tested: 1) an emitting aluminum knob in the vane region with no endcap and 2) an extended cathode with a graphite fiber emission region in the vanes and endcap outside the vanes. Electron endloss current has been measured for the two cathodes. With no endcap, the cathode exhibited endloss current fraction up to 50% of the total; with one endcap, the cathode reduced the endloss current fraction to as little as 12%. Both cathodes produced peak total-electronic efficiency in the range of 14%-21%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2002.801543</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2002-06, Vol.30 (3), p.947-955
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_907958924
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Accelerator magnets
Accelerators
Aluminum
Blades
Cathodes
Devices
Electric potential
Extraction
Instruments
Magnetic devices
Microwave devices
Microwaves
Particle physics
Testing
Time frequency analysis
Vanes
Voltage
title Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T19%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20effects%20on%20a%20relativistic%20magnetron%20driven%20by%20a%20microsecond%20e-beam%20accelerator&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Lopez,%20M.R.&rft.date=2002-06-01&rft.volume=30&rft.issue=3&rft.spage=947&rft.epage=955&rft.pages=947-955&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2002.801543&rft_dat=%3Cproquest_cross%3E28247217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-485754a15796799b034ef92948805a9f1890cb1d989932b5243702004729b9213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195169629&rft_id=info:pmid/&rft_ieee_id=1158329&rfr_iscdi=true