Loading…

Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation

Access to the cochlea requires drilling in close proximity to bone-embedded nerves, blood vessels, and other structures, the violation of which can result in complications for the patient. It has recently been shown that microstereotactic frames can enable an image-guided percutaneous approach, remo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2011-10, Vol.58 (10), p.2904-2910
Main Authors: Kratchman, Louis B., Blachon, Grégoire S., Withrow, Thomas J., Balachandran, Ramya, Labadie, Robert F., Webster, Robert J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993
cites cdi_FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993
container_end_page 2910
container_issue 10
container_start_page 2904
container_title IEEE transactions on biomedical engineering
container_volume 58
creator Kratchman, Louis B.
Blachon, Grégoire S.
Withrow, Thomas J.
Balachandran, Ramya
Labadie, Robert F.
Webster, Robert J.
description Access to the cochlea requires drilling in close proximity to bone-embedded nerves, blood vessels, and other structures, the violation of which can result in complications for the patient. It has recently been shown that microstereotactic frames can enable an image-guided percutaneous approach, removing reliance on human experience and hand-eye coordination, and reducing trauma. However, constructing current microstereotactic frames disrupts the clinical workflow, requiring multiday intrasurgical manufacturing delays, or an on-call machine shop in or near the hospital. In this paper, we describe a new kind of microsterotactic frame that obviates these delay and infrastructure issues by being repositionable. Inspired by the prior success of bone-attached parallel robots in knee and spinal procedures, we present an automated image-guided microstereotactic frame. Experiments demonstrate a mean accuracy at the cochlea of 0.20 ± 0.07 mm in phantom testing with trajectories taken from a human clinical dataset. We also describe a cadaver experiment evaluating the entire image-guided surgery pipeline, where we achieved an accuracy of 0.38 mm at the cochlea.
doi_str_mv 10.1109/TBME.2011.2162512
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_893979750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5958581</ieee_id><sourcerecordid>2549723151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993</originalsourceid><addsrcrecordid>eNqNkd1rFDEUxYModq3-ASLIIIhPs-bmY5K8CO1atVBpkfocMpk73SmzkzXJCP73Ztl1_XjyKYT7u4dz7iHkOdAlADVvb88_XywZBVgyaJgE9oAsQEpdM8nhIVlQCro2zIgT8iSl-_IVWjSPyQkDpTVoWJDr95iGu6kKfeWq8zBhfZaz82vsqhsX3TjiWH0JbchVH2J1g9HP2U0Y5lStgl-P6GJ1udmObsouD2F6Sh71bkz47PCekq8fLm5Xn-qr64-Xq7Or2kvFc933TlJkAlrTKdMJIbxE1QkODe09R1MCdEAFY4wiZ42mjaJat42RyrTG8FPybq-7ndsNdh6nXNzabRw2Lv6wwQ3278k0rO1d-G5FUQUOReDNQSCGbzOmbDdD8jiO-3RWGwOSa6n_g-RGGSVpIV_9Q96HOU7lDtYApyUu2zmHPeRjSClifzQN1O5qtbta7a5We6i17Lz8M-1x41ePBXh9AFzybuyjm_yQfnNCUSUaWbgXe25AxONYGlmCAv8J8u-xrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913024129</pqid></control><display><type>article</type><title>Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation</title><source>IEEE Xplore All Conference Series</source><creator>Kratchman, Louis B. ; Blachon, Grégoire S. ; Withrow, Thomas J. ; Balachandran, Ramya ; Labadie, Robert F. ; Webster, Robert J.</creator><creatorcontrib>Kratchman, Louis B. ; Blachon, Grégoire S. ; Withrow, Thomas J. ; Balachandran, Ramya ; Labadie, Robert F. ; Webster, Robert J.</creatorcontrib><description>Access to the cochlea requires drilling in close proximity to bone-embedded nerves, blood vessels, and other structures, the violation of which can result in complications for the patient. It has recently been shown that microstereotactic frames can enable an image-guided percutaneous approach, removing reliance on human experience and hand-eye coordination, and reducing trauma. However, constructing current microstereotactic frames disrupts the clinical workflow, requiring multiday intrasurgical manufacturing delays, or an on-call machine shop in or near the hospital. In this paper, we describe a new kind of microsterotactic frame that obviates these delay and infrastructure issues by being repositionable. Inspired by the prior success of bone-attached parallel robots in knee and spinal procedures, we present an automated image-guided microstereotactic frame. Experiments demonstrate a mean accuracy at the cochlea of 0.20 ± 0.07 mm in phantom testing with trajectories taken from a human clinical dataset. We also describe a cadaver experiment evaluating the entire image-guided surgery pipeline, where we achieved an accuracy of 0.38 mm at the cochlea.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2011.2162512</identifier><identifier>PMID: 21788181</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Bone-attached robot ; Bones ; Cochlea - surgery ; cochlear implant ; Cochlear Implantation - instrumentation ; Cochlear Implantation - methods ; Computed tomography ; Computer science; control theory; systems ; Control theory. Systems ; Equipment Design ; Exact sciences and technology ; Gough-Stewart platform ; Humans ; microtable ; minimally invasive surgery (MIS) ; parallel robot ; Phantoms, Imaging ; Robot kinematics ; Robotics ; Robotics - instrumentation ; Software ; Surgery, Computer-Assisted - instrumentation ; Temporal Bone - surgery ; Tomography, X-Ray Computed ; Trajectory</subject><ispartof>IEEE transactions on biomedical engineering, 2011-10, Vol.58 (10), p.2904-2910</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><rights>2011 IEEE 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993</citedby><cites>FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5958581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,54906,55147,55283</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5958581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24707465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21788181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kratchman, Louis B.</creatorcontrib><creatorcontrib>Blachon, Grégoire S.</creatorcontrib><creatorcontrib>Withrow, Thomas J.</creatorcontrib><creatorcontrib>Balachandran, Ramya</creatorcontrib><creatorcontrib>Labadie, Robert F.</creatorcontrib><creatorcontrib>Webster, Robert J.</creatorcontrib><title>Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Access to the cochlea requires drilling in close proximity to bone-embedded nerves, blood vessels, and other structures, the violation of which can result in complications for the patient. It has recently been shown that microstereotactic frames can enable an image-guided percutaneous approach, removing reliance on human experience and hand-eye coordination, and reducing trauma. However, constructing current microstereotactic frames disrupts the clinical workflow, requiring multiday intrasurgical manufacturing delays, or an on-call machine shop in or near the hospital. In this paper, we describe a new kind of microsterotactic frame that obviates these delay and infrastructure issues by being repositionable. Inspired by the prior success of bone-attached parallel robots in knee and spinal procedures, we present an automated image-guided microstereotactic frame. Experiments demonstrate a mean accuracy at the cochlea of 0.20 ± 0.07 mm in phantom testing with trajectories taken from a human clinical dataset. We also describe a cadaver experiment evaluating the entire image-guided surgery pipeline, where we achieved an accuracy of 0.38 mm at the cochlea.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Bone-attached robot</subject><subject>Bones</subject><subject>Cochlea - surgery</subject><subject>cochlear implant</subject><subject>Cochlear Implantation - instrumentation</subject><subject>Cochlear Implantation - methods</subject><subject>Computed tomography</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Gough-Stewart platform</subject><subject>Humans</subject><subject>microtable</subject><subject>minimally invasive surgery (MIS)</subject><subject>parallel robot</subject><subject>Phantoms, Imaging</subject><subject>Robot kinematics</subject><subject>Robotics</subject><subject>Robotics - instrumentation</subject><subject>Software</subject><subject>Surgery, Computer-Assisted - instrumentation</subject><subject>Temporal Bone - surgery</subject><subject>Tomography, X-Ray Computed</subject><subject>Trajectory</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkd1rFDEUxYModq3-ASLIIIhPs-bmY5K8CO1atVBpkfocMpk73SmzkzXJCP73Ztl1_XjyKYT7u4dz7iHkOdAlADVvb88_XywZBVgyaJgE9oAsQEpdM8nhIVlQCro2zIgT8iSl-_IVWjSPyQkDpTVoWJDr95iGu6kKfeWq8zBhfZaz82vsqhsX3TjiWH0JbchVH2J1g9HP2U0Y5lStgl-P6GJ1udmObsouD2F6Sh71bkz47PCekq8fLm5Xn-qr64-Xq7Or2kvFc933TlJkAlrTKdMJIbxE1QkODe09R1MCdEAFY4wiZ42mjaJat42RyrTG8FPybq-7ndsNdh6nXNzabRw2Lv6wwQ3278k0rO1d-G5FUQUOReDNQSCGbzOmbDdD8jiO-3RWGwOSa6n_g-RGGSVpIV_9Q96HOU7lDtYApyUu2zmHPeRjSClifzQN1O5qtbta7a5We6i17Lz8M-1x41ePBXh9AFzybuyjm_yQfnNCUSUaWbgXe25AxONYGlmCAv8J8u-xrA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Kratchman, Louis B.</creator><creator>Blachon, Grégoire S.</creator><creator>Withrow, Thomas J.</creator><creator>Balachandran, Ramya</creator><creator>Labadie, Robert F.</creator><creator>Webster, Robert J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation</title><author>Kratchman, Louis B. ; Blachon, Grégoire S. ; Withrow, Thomas J. ; Balachandran, Ramya ; Labadie, Robert F. ; Webster, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Bone-attached robot</topic><topic>Bones</topic><topic>Cochlea - surgery</topic><topic>cochlear implant</topic><topic>Cochlear Implantation - instrumentation</topic><topic>Cochlear Implantation - methods</topic><topic>Computed tomography</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Gough-Stewart platform</topic><topic>Humans</topic><topic>microtable</topic><topic>minimally invasive surgery (MIS)</topic><topic>parallel robot</topic><topic>Phantoms, Imaging</topic><topic>Robot kinematics</topic><topic>Robotics</topic><topic>Robotics - instrumentation</topic><topic>Software</topic><topic>Surgery, Computer-Assisted - instrumentation</topic><topic>Temporal Bone - surgery</topic><topic>Tomography, X-Ray Computed</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kratchman, Louis B.</creatorcontrib><creatorcontrib>Blachon, Grégoire S.</creatorcontrib><creatorcontrib>Withrow, Thomas J.</creatorcontrib><creatorcontrib>Balachandran, Ramya</creatorcontrib><creatorcontrib>Labadie, Robert F.</creatorcontrib><creatorcontrib>Webster, Robert J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kratchman, Louis B.</au><au>Blachon, Grégoire S.</au><au>Withrow, Thomas J.</au><au>Balachandran, Ramya</au><au>Labadie, Robert F.</au><au>Webster, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>10</issue><spage>2904</spage><epage>2910</epage><pages>2904-2910</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>ObjectType-Article-2</notes><notes>ObjectType-Conference-1</notes><notes>ObjectType-Feature-3</notes><notes>SourceType-Conference Papers &amp; Proceedings-2</notes><abstract>Access to the cochlea requires drilling in close proximity to bone-embedded nerves, blood vessels, and other structures, the violation of which can result in complications for the patient. It has recently been shown that microstereotactic frames can enable an image-guided percutaneous approach, removing reliance on human experience and hand-eye coordination, and reducing trauma. However, constructing current microstereotactic frames disrupts the clinical workflow, requiring multiday intrasurgical manufacturing delays, or an on-call machine shop in or near the hospital. In this paper, we describe a new kind of microsterotactic frame that obviates these delay and infrastructure issues by being repositionable. Inspired by the prior success of bone-attached parallel robots in knee and spinal procedures, we present an automated image-guided microstereotactic frame. Experiments demonstrate a mean accuracy at the cochlea of 0.20 ± 0.07 mm in phantom testing with trajectories taken from a human clinical dataset. We also describe a cadaver experiment evaluating the entire image-guided surgery pipeline, where we achieved an accuracy of 0.38 mm at the cochlea.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21788181</pmid><doi>10.1109/TBME.2011.2162512</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2011-10, Vol.58 (10), p.2904-2910
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_893979750
source IEEE Xplore All Conference Series
subjects Accuracy
Applied sciences
Bone-attached robot
Bones
Cochlea - surgery
cochlear implant
Cochlear Implantation - instrumentation
Cochlear Implantation - methods
Computed tomography
Computer science
control theory
systems
Control theory. Systems
Equipment Design
Exact sciences and technology
Gough-Stewart platform
Humans
microtable
minimally invasive surgery (MIS)
parallel robot
Phantoms, Imaging
Robot kinematics
Robotics
Robotics - instrumentation
Software
Surgery, Computer-Assisted - instrumentation
Temporal Bone - surgery
Tomography, X-Ray Computed
Trajectory
title Design of a Bone-Attached Parallel Robot for Percutaneous Cochlear Implantation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T17%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Bone-Attached%20Parallel%20Robot%20for%20Percutaneous%20Cochlear%20Implantation&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Kratchman,%20Louis%20B.&rft.date=2011-10-01&rft.volume=58&rft.issue=10&rft.spage=2904&rft.epage=2910&rft.pages=2904-2910&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2011.2162512&rft_dat=%3Cproquest_CHZPO%3E2549723151%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-ffa50e241b9d79d444c5e7d43160fc3e9531d1042220e3268067088b69579b993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=913024129&rft_id=info:pmid/21788181&rft_ieee_id=5958581&rfr_iscdi=true