Loading…

origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio

Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters 2011-03, Vol.14 (3), p.244-250
Main Authors: Loladze, Irakli, Elser, James J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943
cites
container_end_page 250
container_issue 3
container_start_page 244
container_title Ecology letters
container_volume 14
creator Loladze, Irakli
Elser, James J
description Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.
doi_str_mv 10.1111/j.1461-0248.2010.01577.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_860396340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>860396340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF8BCqjhl8Vds58CharcFaVVQaYGbcZzJrpdsvNiJ2P57nGZZJC5Ysjyaed7RjN8sQwTPSDpv1zPCBckx5WpGccpiUkg52z3Kjg-Fx4eYfTvKnsW4xpjQUpKn2REllPOiZMfZdx_c0nUR-Qb1K0A3UDcO2hp1rg9-CV3e-3y78jHdMEQUTO88MgGQ65BBK7_x4GOfshZtg-_BPSjCzfXZxD7PnjSmjfBi_55kd5fz2_P3-eLj1Yfzs0VuBRYy5yUHbJSlBaPCFmBA0ApqxQxhpimkAAuglOBVUWElKiWAFHXiLAXFSs5OsjdT3zTFzwFirzcuWmhb04EfolYCs1Iwjv9PphFoajmSr_8h134IXVojQbRkjJU0QS_30FBtoNbb4DYm3Os_f5yA0z1gojVtE0xnXfzLpSaYynGDdxP3y7Vwf6gTrEfP9VqPdurRWj16rh881zs9X8zHKOnzSe9iD7uD3oQfWkgmC_31-kp_IrcXF18uuR7nejXxjfHaLEOa6e5z6swwKbmUirHfT7u2WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852933392</pqid></control><display><type>article</type><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Loladze, Irakli ; Elser, James J</creator><creatorcontrib>Loladze, Irakli ; Elser, James J</creatorcontrib><description>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/j.1461-0248.2010.01577.x</identifier><identifier>PMID: 21244593</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biogeochemistry ; Biological and medical sciences ; Cellular biology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Homeostasis ; Marine ; Microbes ; Models, Biological ; N/P ; nitrogen ; Nitrogen - metabolism ; Oceans and Seas ; phosphorus ; Phosphorus - metabolism ; Plankton ; Plankton - chemistry ; Plankton - physiology ; polymerase ; Protein Biosynthesis ; protein synthesis ; Proteins - chemistry ; Proteins - metabolism ; Redfield ratios ; ribosomes ; RNA, Ribosomal - biosynthesis ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - metabolism ; RNA-protein interactions ; rRNA</subject><ispartof>Ecology letters, 2011-03, Vol.14 (3), p.244-250</ispartof><rights>2011 Blackwell Publishing Ltd/CNRS</rights><rights>2015 INIST-CNRS</rights><rights>2011 Blackwell Publishing Ltd/CNRS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23920274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21244593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loladze, Irakli</creatorcontrib><creatorcontrib>Elser, James J</creatorcontrib><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Homeostasis</subject><subject>Marine</subject><subject>Microbes</subject><subject>Models, Biological</subject><subject>N/P</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Oceans and Seas</subject><subject>phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plankton</subject><subject>Plankton - chemistry</subject><subject>Plankton - physiology</subject><subject>polymerase</subject><subject>Protein Biosynthesis</subject><subject>protein synthesis</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Redfield ratios</subject><subject>ribosomes</subject><subject>RNA, Ribosomal - biosynthesis</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA-protein interactions</subject><subject>rRNA</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEoqXwF8BCqjhl8Vds58CharcFaVVQaYGbcZzJrpdsvNiJ2P57nGZZJC5Ysjyaed7RjN8sQwTPSDpv1zPCBckx5WpGccpiUkg52z3Kjg-Fx4eYfTvKnsW4xpjQUpKn2REllPOiZMfZdx_c0nUR-Qb1K0A3UDcO2hp1rg9-CV3e-3y78jHdMEQUTO88MgGQ65BBK7_x4GOfshZtg-_BPSjCzfXZxD7PnjSmjfBi_55kd5fz2_P3-eLj1Yfzs0VuBRYy5yUHbJSlBaPCFmBA0ApqxQxhpimkAAuglOBVUWElKiWAFHXiLAXFSs5OsjdT3zTFzwFirzcuWmhb04EfolYCs1Iwjv9PphFoajmSr_8h134IXVojQbRkjJU0QS_30FBtoNbb4DYm3Os_f5yA0z1gojVtE0xnXfzLpSaYynGDdxP3y7Vwf6gTrEfP9VqPdurRWj16rh881zs9X8zHKOnzSe9iD7uD3oQfWkgmC_31-kp_IrcXF18uuR7nejXxjfHaLEOa6e5z6swwKbmUirHfT7u2WA</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Loladze, Irakli</creator><creator>Elser, James J</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>7ST</scope><scope>7TM</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201103</creationdate><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><author>Loladze, Irakli ; Elser, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Homeostasis</topic><topic>Marine</topic><topic>Microbes</topic><topic>Models, Biological</topic><topic>N/P</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Oceans and Seas</topic><topic>phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plankton</topic><topic>Plankton - chemistry</topic><topic>Plankton - physiology</topic><topic>polymerase</topic><topic>Protein Biosynthesis</topic><topic>protein synthesis</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Redfield ratios</topic><topic>ribosomes</topic><topic>RNA, Ribosomal - biosynthesis</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA-protein interactions</topic><topic>rRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loladze, Irakli</creatorcontrib><creatorcontrib>Elser, James J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loladze, Irakli</au><au>Elser, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2011-03</date><risdate>2011</risdate><volume>14</volume><issue>3</issue><spage>244</spage><epage>250</epage><pages>244-250</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21244593</pmid><doi>10.1111/j.1461-0248.2010.01577.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2011-03, Vol.14 (3), p.244-250
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_860396340
source Wiley-Blackwell Read & Publish Collection
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biogeochemistry
Biological and medical sciences
Cellular biology
Fundamental and applied biological sciences. Psychology
General aspects
Homeostasis
Marine
Microbes
Models, Biological
N/P
nitrogen
Nitrogen - metabolism
Oceans and Seas
phosphorus
Phosphorus - metabolism
Plankton
Plankton - chemistry
Plankton - physiology
polymerase
Protein Biosynthesis
protein synthesis
Proteins - chemistry
Proteins - metabolism
Redfield ratios
ribosomes
RNA, Ribosomal - biosynthesis
RNA, Ribosomal - chemistry
RNA, Ribosomal - metabolism
RNA-protein interactions
rRNA
title origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T08%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=origins%20of%20the%20Redfield%20nitrogen-to-phosphorus%20ratio%20are%20in%20a%20homoeostatic%20protein-to-rRNA%20ratio&rft.jtitle=Ecology%20letters&rft.au=Loladze,%20Irakli&rft.date=2011-03&rft.volume=14&rft.issue=3&rft.spage=244&rft.epage=250&rft.pages=244-250&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/j.1461-0248.2010.01577.x&rft_dat=%3Cproquest_pubme%3E860396340%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=852933392&rft_id=info:pmid/21244593&rfr_iscdi=true