Loading…
origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio
Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the...
Saved in:
Published in: | Ecology letters 2011-03, Vol.14 (3), p.244-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943 |
---|---|
cites | |
container_end_page | 250 |
container_issue | 3 |
container_start_page | 244 |
container_title | Ecology letters |
container_volume | 14 |
creator | Loladze, Irakli Elser, James J |
description | Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life. |
doi_str_mv | 10.1111/j.1461-0248.2010.01577.x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_860396340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>860396340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwF8BCqjhl8Vds58CharcFaVVQaYGbcZzJrpdsvNiJ2P57nGZZJC5Ysjyaed7RjN8sQwTPSDpv1zPCBckx5WpGccpiUkg52z3Kjg-Fx4eYfTvKnsW4xpjQUpKn2REllPOiZMfZdx_c0nUR-Qb1K0A3UDcO2hp1rg9-CV3e-3y78jHdMEQUTO88MgGQ65BBK7_x4GOfshZtg-_BPSjCzfXZxD7PnjSmjfBi_55kd5fz2_P3-eLj1Yfzs0VuBRYy5yUHbJSlBaPCFmBA0ApqxQxhpimkAAuglOBVUWElKiWAFHXiLAXFSs5OsjdT3zTFzwFirzcuWmhb04EfolYCs1Iwjv9PphFoajmSr_8h134IXVojQbRkjJU0QS_30FBtoNbb4DYm3Os_f5yA0z1gojVtE0xnXfzLpSaYynGDdxP3y7Vwf6gTrEfP9VqPdurRWj16rh881zs9X8zHKOnzSe9iD7uD3oQfWkgmC_31-kp_IrcXF18uuR7nejXxjfHaLEOa6e5z6swwKbmUirHfT7u2WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852933392</pqid></control><display><type>article</type><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Loladze, Irakli ; Elser, James J</creator><creatorcontrib>Loladze, Irakli ; Elser, James J</creatorcontrib><description>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/j.1461-0248.2010.01577.x</identifier><identifier>PMID: 21244593</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biogeochemistry ; Biological and medical sciences ; Cellular biology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Homeostasis ; Marine ; Microbes ; Models, Biological ; N/P ; nitrogen ; Nitrogen - metabolism ; Oceans and Seas ; phosphorus ; Phosphorus - metabolism ; Plankton ; Plankton - chemistry ; Plankton - physiology ; polymerase ; Protein Biosynthesis ; protein synthesis ; Proteins - chemistry ; Proteins - metabolism ; Redfield ratios ; ribosomes ; RNA, Ribosomal - biosynthesis ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - metabolism ; RNA-protein interactions ; rRNA</subject><ispartof>Ecology letters, 2011-03, Vol.14 (3), p.244-250</ispartof><rights>2011 Blackwell Publishing Ltd/CNRS</rights><rights>2015 INIST-CNRS</rights><rights>2011 Blackwell Publishing Ltd/CNRS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23920274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21244593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loladze, Irakli</creatorcontrib><creatorcontrib>Elser, James J</creatorcontrib><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Homeostasis</subject><subject>Marine</subject><subject>Microbes</subject><subject>Models, Biological</subject><subject>N/P</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>Oceans and Seas</subject><subject>phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Plankton</subject><subject>Plankton - chemistry</subject><subject>Plankton - physiology</subject><subject>polymerase</subject><subject>Protein Biosynthesis</subject><subject>protein synthesis</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Redfield ratios</subject><subject>ribosomes</subject><subject>RNA, Ribosomal - biosynthesis</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA-protein interactions</subject><subject>rRNA</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEoqXwF8BCqjhl8Vds58CharcFaVVQaYGbcZzJrpdsvNiJ2P57nGZZJC5Ysjyaed7RjN8sQwTPSDpv1zPCBckx5WpGccpiUkg52z3Kjg-Fx4eYfTvKnsW4xpjQUpKn2REllPOiZMfZdx_c0nUR-Qb1K0A3UDcO2hp1rg9-CV3e-3y78jHdMEQUTO88MgGQ65BBK7_x4GOfshZtg-_BPSjCzfXZxD7PnjSmjfBi_55kd5fz2_P3-eLj1Yfzs0VuBRYy5yUHbJSlBaPCFmBA0ApqxQxhpimkAAuglOBVUWElKiWAFHXiLAXFSs5OsjdT3zTFzwFirzcuWmhb04EfolYCs1Iwjv9PphFoajmSr_8h134IXVojQbRkjJU0QS_30FBtoNbb4DYm3Os_f5yA0z1gojVtE0xnXfzLpSaYynGDdxP3y7Vwf6gTrEfP9VqPdurRWj16rh881zs9X8zHKOnzSe9iD7uD3oQfWkgmC_31-kp_IrcXF18uuR7nejXxjfHaLEOa6e5z6swwKbmUirHfT7u2WA</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Loladze, Irakli</creator><creator>Elser, James J</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>7ST</scope><scope>7TM</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201103</creationdate><title>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</title><author>Loladze, Irakli ; Elser, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Homeostasis</topic><topic>Marine</topic><topic>Microbes</topic><topic>Models, Biological</topic><topic>N/P</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>Oceans and Seas</topic><topic>phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Plankton</topic><topic>Plankton - chemistry</topic><topic>Plankton - physiology</topic><topic>polymerase</topic><topic>Protein Biosynthesis</topic><topic>protein synthesis</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Redfield ratios</topic><topic>ribosomes</topic><topic>RNA, Ribosomal - biosynthesis</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA-protein interactions</topic><topic>rRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loladze, Irakli</creatorcontrib><creatorcontrib>Elser, James J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loladze, Irakli</au><au>Elser, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2011-03</date><risdate>2011</risdate><volume>14</volume><issue>3</issue><spage>244</spage><epage>250</epage><pages>244-250</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>Ecology Letters (2011) 14: 244-250 ABSTRACT: One of the most intriguing patterns in the biosphere is the similarity of the atomic nitrogen-to-phosphorus ratio (N:P) = 16 found in waters throughout the deep ocean and in the plankton in the upper ocean. Although A.C. Redfield proposed in 1934 that the intracellular properties of plankton were central to this pattern, no theoretical significance for N:P = 16 in cells had been found. Here, we use theoretical modelling and a compilation of literature data for prokaryotic and eukaryotic microbes to show that the balance between two fundamental processes, protein and rRNA synthesis, results in a stable biochemical attractor that homoeostatically produces a given protein:rRNA ratio. Furthermore, when biochemical constants and reasonable kinetic parameters for protein synthesis and ribosome production under nutrient-replete conditions are applied in the model, it predicts a stable protein:rRNA ratio of 3 ± 0.7, which corresponds to N:P = 16 ± 3. The model also predicts that N-limitation, by constraining protein synthesis rates, will result in N:P ratios below the Redfield value while P-limitation, by constraining RNA production rates, will produce ratios above the Redfield value. Hence, one of most biogeochemically significant patterns on Earth is inherently rooted in the fundamental structure of life.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21244593</pmid><doi>10.1111/j.1461-0248.2010.01577.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-023X |
ispartof | Ecology letters, 2011-03, Vol.14 (3), p.244-250 |
issn | 1461-023X 1461-0248 |
language | eng |
recordid | cdi_proquest_miscellaneous_860396340 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal and plant ecology Animal, plant and microbial ecology Biogeochemistry Biological and medical sciences Cellular biology Fundamental and applied biological sciences. Psychology General aspects Homeostasis Marine Microbes Models, Biological N/P nitrogen Nitrogen - metabolism Oceans and Seas phosphorus Phosphorus - metabolism Plankton Plankton - chemistry Plankton - physiology polymerase Protein Biosynthesis protein synthesis Proteins - chemistry Proteins - metabolism Redfield ratios ribosomes RNA, Ribosomal - biosynthesis RNA, Ribosomal - chemistry RNA, Ribosomal - metabolism RNA-protein interactions rRNA |
title | origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T08%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=origins%20of%20the%20Redfield%20nitrogen-to-phosphorus%20ratio%20are%20in%20a%20homoeostatic%20protein-to-rRNA%20ratio&rft.jtitle=Ecology%20letters&rft.au=Loladze,%20Irakli&rft.date=2011-03&rft.volume=14&rft.issue=3&rft.spage=244&rft.epage=250&rft.pages=244-250&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/j.1461-0248.2010.01577.x&rft_dat=%3Cproquest_pubme%3E860396340%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6067-494e0a8c25326c5eae62bed83a13af576ecee8864b5b086b86e15d5eac2e83943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=852933392&rft_id=info:pmid/21244593&rfr_iscdi=true |