Loading…

NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation

Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2004-02, Vol.43 (4), p.1126-1133
Main Authors: Getmanova, Elena, Patel, Ashish B, Klein-Seetharaman, Judith, Loewen, Michele C, Reeves, Philip J, Friedman, Noga, Sheves, Mordechai, Smith, Steven O, Khorana, H. Gobind
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03
cites cdi_FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03
container_end_page 1133
container_issue 4
container_start_page 1126
container_title Biochemistry (Easton)
container_volume 43
creator Getmanova, Elena
Patel, Ashish B
Klein-Seetharaman, Judith
Loewen, Michele C
Reeves, Philip J
Friedman, Noga
Sheves, Mordechai
Smith, Steven O
Khorana, H. Gobind
description Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The 31P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached −40 °C. Below this temperature, the 31P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above −40 °C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, 19F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the 19F and the 31P-labels. The REDOR technique allows 19F···31P distances to be measured out to ∼12 Å with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the 19F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 Å in phosphorylated rhodopsin.
doi_str_mv 10.1021/bi030120u
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80119115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80119115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03</originalsourceid><addsrcrecordid>eNqF0d2K1DAUB_AgijuuXvgCkhsFL6onadq03i2j-wGz47Az4mVIk9Rm7TTdJBXnztt9gn2_fZLtOMMIIgiBEPI758D5I_SSwDsClLyvLKRAKAyP0IRkFBJWltljNAGAPKFlDkfoWQjX45MBZ0_REWGcMZKVE3Q3v7zCy96o6F1Qrt9gV-NF40LfOL9pZTQaf7WtTlab3uCrxmnXB9t9uP91iy9dZVsbf5fExvxdNk1Wxq9tN4QtOJTi8Wz1R-m_Y9lpPPSuwzP7rYn4REX7Q0bruufoSS3bYF7s72P05fTTanqezD6fXUxPZolMC4gJAcZAqqqsq4rXUtKalEwTlbNUlTnNdUEVyCLLlCq4JppKA4XmtALQWWogPUZvdn17724GE6JY26BM28rOuCGIAggpCcn-CwnnBSkYHeHbHVTjRoM3tei9XUu_EQTENi5xiGu0r_ZNh2pt9B-5z2cEyQ7YEM3Pw_-4OpHzlGditViKOT9fzpenU7EY_eudlyqIazf4blzePwY_AEgirdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17781842</pqid></control><display><type>article</type><title>NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation</title><source>Access via American Chemical Society</source><creator>Getmanova, Elena ; Patel, Ashish B ; Klein-Seetharaman, Judith ; Loewen, Michele C ; Reeves, Philip J ; Friedman, Noga ; Sheves, Mordechai ; Smith, Steven O ; Khorana, H. Gobind</creator><creatorcontrib>Getmanova, Elena ; Patel, Ashish B ; Klein-Seetharaman, Judith ; Loewen, Michele C ; Reeves, Philip J ; Friedman, Noga ; Sheves, Mordechai ; Smith, Steven O ; Khorana, H. Gobind</creatorcontrib><description>Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The 31P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached −40 °C. Below this temperature, the 31P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above −40 °C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, 19F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the 19F and the 31P-labels. The REDOR technique allows 19F···31P distances to be measured out to ∼12 Å with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the 19F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 Å in phosphorylated rhodopsin.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi030120u</identifier><identifier>PMID: 14744159</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Cattle ; Cysteine - chemistry ; Darkness ; Fluorine - metabolism ; Light ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular - methods ; Peptide Fragments - chemistry ; Peptide Fragments - metabolism ; Phosphorus Isotopes - metabolism ; Phosphorylation ; Rhodopsin - chemistry ; Rhodopsin - metabolism ; Solutions ; Trifluoroethanol - chemistry</subject><ispartof>Biochemistry (Easton), 2004-02, Vol.43 (4), p.1126-1133</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03</citedby><cites>FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27955,27956</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14744159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Getmanova, Elena</creatorcontrib><creatorcontrib>Patel, Ashish B</creatorcontrib><creatorcontrib>Klein-Seetharaman, Judith</creatorcontrib><creatorcontrib>Loewen, Michele C</creatorcontrib><creatorcontrib>Reeves, Philip J</creatorcontrib><creatorcontrib>Friedman, Noga</creatorcontrib><creatorcontrib>Sheves, Mordechai</creatorcontrib><creatorcontrib>Smith, Steven O</creatorcontrib><creatorcontrib>Khorana, H. Gobind</creatorcontrib><title>NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The 31P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached −40 °C. Below this temperature, the 31P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above −40 °C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, 19F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the 19F and the 31P-labels. The REDOR technique allows 19F···31P distances to be measured out to ∼12 Å with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the 19F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 Å in phosphorylated rhodopsin.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cattle</subject><subject>Cysteine - chemistry</subject><subject>Darkness</subject><subject>Fluorine - metabolism</subject><subject>Light</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Peptide Fragments - chemistry</subject><subject>Peptide Fragments - metabolism</subject><subject>Phosphorus Isotopes - metabolism</subject><subject>Phosphorylation</subject><subject>Rhodopsin - chemistry</subject><subject>Rhodopsin - metabolism</subject><subject>Solutions</subject><subject>Trifluoroethanol - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0d2K1DAUB_AgijuuXvgCkhsFL6onadq03i2j-wGz47Az4mVIk9Rm7TTdJBXnztt9gn2_fZLtOMMIIgiBEPI758D5I_SSwDsClLyvLKRAKAyP0IRkFBJWltljNAGAPKFlDkfoWQjX45MBZ0_REWGcMZKVE3Q3v7zCy96o6F1Qrt9gV-NF40LfOL9pZTQaf7WtTlab3uCrxmnXB9t9uP91iy9dZVsbf5fExvxdNk1Wxq9tN4QtOJTi8Wz1R-m_Y9lpPPSuwzP7rYn4REX7Q0bruufoSS3bYF7s72P05fTTanqezD6fXUxPZolMC4gJAcZAqqqsq4rXUtKalEwTlbNUlTnNdUEVyCLLlCq4JppKA4XmtALQWWogPUZvdn17724GE6JY26BM28rOuCGIAggpCcn-CwnnBSkYHeHbHVTjRoM3tei9XUu_EQTENi5xiGu0r_ZNh2pt9B-5z2cEyQ7YEM3Pw_-4OpHzlGditViKOT9fzpenU7EY_eudlyqIazf4blzePwY_AEgirdw</recordid><startdate>20040203</startdate><enddate>20040203</enddate><creator>Getmanova, Elena</creator><creator>Patel, Ashish B</creator><creator>Klein-Seetharaman, Judith</creator><creator>Loewen, Michele C</creator><creator>Reeves, Philip J</creator><creator>Friedman, Noga</creator><creator>Sheves, Mordechai</creator><creator>Smith, Steven O</creator><creator>Khorana, H. Gobind</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20040203</creationdate><title>NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation</title><author>Getmanova, Elena ; Patel, Ashish B ; Klein-Seetharaman, Judith ; Loewen, Michele C ; Reeves, Philip J ; Friedman, Noga ; Sheves, Mordechai ; Smith, Steven O ; Khorana, H. Gobind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cattle</topic><topic>Cysteine - chemistry</topic><topic>Darkness</topic><topic>Fluorine - metabolism</topic><topic>Light</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Peptide Fragments - chemistry</topic><topic>Peptide Fragments - metabolism</topic><topic>Phosphorus Isotopes - metabolism</topic><topic>Phosphorylation</topic><topic>Rhodopsin - chemistry</topic><topic>Rhodopsin - metabolism</topic><topic>Solutions</topic><topic>Trifluoroethanol - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getmanova, Elena</creatorcontrib><creatorcontrib>Patel, Ashish B</creatorcontrib><creatorcontrib>Klein-Seetharaman, Judith</creatorcontrib><creatorcontrib>Loewen, Michele C</creatorcontrib><creatorcontrib>Reeves, Philip J</creatorcontrib><creatorcontrib>Friedman, Noga</creatorcontrib><creatorcontrib>Sheves, Mordechai</creatorcontrib><creatorcontrib>Smith, Steven O</creatorcontrib><creatorcontrib>Khorana, H. Gobind</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getmanova, Elena</au><au>Patel, Ashish B</au><au>Klein-Seetharaman, Judith</au><au>Loewen, Michele C</au><au>Reeves, Philip J</au><au>Friedman, Noga</au><au>Sheves, Mordechai</au><au>Smith, Steven O</au><au>Khorana, H. Gobind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2004-02-03</date><risdate>2004</risdate><volume>43</volume><issue>4</issue><spage>1126</spage><epage>1133</epage><pages>1126-1133</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><notes>istex:1622EDD23AB8418AB65C362148D1BD26F61174A4</notes><notes>This research was supported by National Institutes of Health Grant NEI11716 (H.G.K.) and at Stony Brook by the National Institutes of Health (S.O.S. GM-41412), the National Science Foundation under Instrumentation Grant No. 9907840, and the W. M. Keck Foundation.</notes><notes>ark:/67375/TPS-N7HSNSFC-P</notes><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The 31P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached −40 °C. Below this temperature, the 31P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above −40 °C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, 19F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the 19F and the 31P-labels. The REDOR technique allows 19F···31P distances to be measured out to ∼12 Å with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the 19F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 Å in phosphorylated rhodopsin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>14744159</pmid><doi>10.1021/bi030120u</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2004-02, Vol.43 (4), p.1126-1133
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_80119115
source Access via American Chemical Society
subjects Amino Acid Sequence
Animals
Cattle
Cysteine - chemistry
Darkness
Fluorine - metabolism
Light
Molecular Sequence Data
Nuclear Magnetic Resonance, Biomolecular - methods
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Phosphorus Isotopes - metabolism
Phosphorylation
Rhodopsin - chemistry
Rhodopsin - metabolism
Solutions
Trifluoroethanol - chemistry
title NMR Spectroscopy of Phosphorylated Wild-Type Rhodopsin:  Mobility of the Phosphorylated C-Terminus of Rhodopsin in the Dark and upon Light Activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-01T08%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20Spectroscopy%20of%20Phosphorylated%20Wild-Type%20Rhodopsin:%E2%80%89%20Mobility%20of%20the%20Phosphorylated%20C-Terminus%20of%20Rhodopsin%20in%20the%20Dark%20and%20upon%20Light%20Activation&rft.jtitle=Biochemistry%20(Easton)&rft.au=Getmanova,%20Elena&rft.date=2004-02-03&rft.volume=43&rft.issue=4&rft.spage=1126&rft.epage=1133&rft.pages=1126-1133&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi030120u&rft_dat=%3Cproquest_cross%3E80119115%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a380t-10440acb9fbb7faa2f194d1c643c9626d82c0a855cc87d1d2ae08d72b00d53e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17781842&rft_id=info:pmid/14744159&rfr_iscdi=true