Loading…

Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation

Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 1996-09, Vol.5 (9), p.1279-1288
Main Authors: Page, Scott L., Shin, Jong-Chul, Han, Jin-Yeong, Andy Choo, K. H., Shaffer, Lisa G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043
cites
container_end_page 1288
container_issue 9
container_start_page 1279
container_title Human molecular genetics
container_volume 5
creator Page, Scott L.
Shin, Jong-Chul
Han, Jin-Yeong
Andy Choo, K. H.
Shaffer, Lisa G.
description Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.
doi_str_mv 10.1093/hmg/5.9.1279
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78441185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15743709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo6zh68yr0QTzZs0knnY-ju7rO4oogq8iChOp02o3b3RlTGXH_vRlnmKunKup9eCkeQp4zumLU8NPb6cdpuzIr1ijzgCyYkLRuqOYPyYIaKWppqHxMniD-pJRJwdUJOdFaNUKqBfl-ljzcbWKYc_U2_PYJQ76vLsdxizlB9liumMPscvXRu1uYA05YDTFVn2PnU8Y4B5ir6wQzjtFBDnGuLmKa_m1PyaMBRvTPDnNJvly8uz5f11ef3l-ev7mqndA614ZBo0H5oW-pBNdrqanspaey1QNzgzKqAwWedspJ0Uno-MCV1rKHrpFU8CV5te_dpPhr6zHbKaDz4wizj1u0SgvBmG7_C7JWFUHF6pK83oMuRcTkB7tJYYJ0bxm1O-22aLetNXanveAvDr3bbvL9ET54LvnLQw7oYByKLhfwiHFmpG5379V7rDj3f44xpDtbSlRr199u7Ffe6rOb9Qer-V8cipvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15743709</pqid></control><display><type>article</type><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><source>Oxford University Press Journals</source><creator>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</creator><creatorcontrib>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</creatorcontrib><description>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/5.9.1279</identifier><identifier>PMID: 8872467</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Chromosomes, Human, Pair 11 - genetics ; Cytogenetics ; DNA Probes ; DNA, Satellite - genetics ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Human ; Humans ; In Situ Hybridization, Fluorescence ; Karyotyping ; Translocation, Genetic - genetics</subject><ispartof>Human molecular genetics, 1996-09, Vol.5 (9), p.1279-1288</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3196855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8872467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Page, Scott L.</creatorcontrib><creatorcontrib>Shin, Jong-Chul</creatorcontrib><creatorcontrib>Han, Jin-Yeong</creatorcontrib><creatorcontrib>Andy Choo, K. H.</creatorcontrib><creatorcontrib>Shaffer, Lisa G.</creatorcontrib><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><title>Human molecular genetics</title><addtitle>Human Molecular Genetics</addtitle><description>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</description><subject>Biological and medical sciences</subject><subject>Chromosomes, Human, Pair 11 - genetics</subject><subject>Cytogenetics</subject><subject>DNA Probes</subject><subject>DNA, Satellite - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Human</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Karyotyping</subject><subject>Translocation, Genetic - genetics</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQhoMo6zh68yr0QTzZs0knnY-ju7rO4oogq8iChOp02o3b3RlTGXH_vRlnmKunKup9eCkeQp4zumLU8NPb6cdpuzIr1ijzgCyYkLRuqOYPyYIaKWppqHxMniD-pJRJwdUJOdFaNUKqBfl-ljzcbWKYc_U2_PYJQ76vLsdxizlB9liumMPscvXRu1uYA05YDTFVn2PnU8Y4B5ir6wQzjtFBDnGuLmKa_m1PyaMBRvTPDnNJvly8uz5f11ef3l-ev7mqndA614ZBo0H5oW-pBNdrqanspaey1QNzgzKqAwWedspJ0Uno-MCV1rKHrpFU8CV5te_dpPhr6zHbKaDz4wizj1u0SgvBmG7_C7JWFUHF6pK83oMuRcTkB7tJYYJ0bxm1O-22aLetNXanveAvDr3bbvL9ET54LvnLQw7oYByKLhfwiHFmpG5379V7rDj3f44xpDtbSlRr199u7Ffe6rOb9Qer-V8cipvV</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Page, Scott L.</creator><creator>Shin, Jong-Chul</creator><creator>Han, Jin-Yeong</creator><creator>Andy Choo, K. H.</creator><creator>Shaffer, Lisa G.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19960901</creationdate><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><author>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biological and medical sciences</topic><topic>Chromosomes, Human, Pair 11 - genetics</topic><topic>Cytogenetics</topic><topic>DNA Probes</topic><topic>DNA, Satellite - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Human</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Karyotyping</topic><topic>Translocation, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Scott L.</creatorcontrib><creatorcontrib>Shin, Jong-Chul</creatorcontrib><creatorcontrib>Han, Jin-Yeong</creatorcontrib><creatorcontrib>Andy Choo, K. H.</creatorcontrib><creatorcontrib>Shaffer, Lisa G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Scott L.</au><au>Shin, Jong-Chul</au><au>Han, Jin-Yeong</au><au>Andy Choo, K. H.</au><au>Shaffer, Lisa G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Human Molecular Genetics</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>5</volume><issue>9</issue><spage>1279</spage><epage>1288</epage><pages>1279-1288</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><abstract>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>8872467</pmid><doi>10.1093/hmg/5.9.1279</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 1996-09, Vol.5 (9), p.1279-1288
issn 0964-6906
1460-2083
1460-2083
language eng
recordid cdi_proquest_miscellaneous_78441185
source Oxford University Press Journals
subjects Biological and medical sciences
Chromosomes, Human, Pair 11 - genetics
Cytogenetics
DNA Probes
DNA, Satellite - genetics
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Human
Humans
In Situ Hybridization, Fluorescence
Karyotyping
Translocation, Genetic - genetics
title Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T06%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakpoint%20Diversity%20Illustrates%20Distinct%20Mechanisms%20for%20Robertsonian%20Translocation%20Formation&rft.jtitle=Human%20molecular%20genetics&rft.au=Page,%20Scott%20L.&rft.date=1996-09-01&rft.volume=5&rft.issue=9&rft.spage=1279&rft.epage=1288&rft.pages=1279-1288&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/5.9.1279&rft_dat=%3Cproquest_cross%3E15743709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15743709&rft_id=info:pmid/8872467&rfr_iscdi=true