Loading…
Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation
Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been...
Saved in:
Published in: | Human molecular genetics 1996-09, Vol.5 (9), p.1279-1288 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043 |
---|---|
cites | |
container_end_page | 1288 |
container_issue | 9 |
container_start_page | 1279 |
container_title | Human molecular genetics |
container_volume | 5 |
creator | Page, Scott L. Shin, Jong-Chul Han, Jin-Yeong Andy Choo, K. H. Shaffer, Lisa G. |
description | Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations. |
doi_str_mv | 10.1093/hmg/5.9.1279 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78441185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15743709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo6zh68yr0QTzZs0knnY-ju7rO4oogq8iChOp02o3b3RlTGXH_vRlnmKunKup9eCkeQp4zumLU8NPb6cdpuzIr1ijzgCyYkLRuqOYPyYIaKWppqHxMniD-pJRJwdUJOdFaNUKqBfl-ljzcbWKYc_U2_PYJQ76vLsdxizlB9liumMPscvXRu1uYA05YDTFVn2PnU8Y4B5ir6wQzjtFBDnGuLmKa_m1PyaMBRvTPDnNJvly8uz5f11ef3l-ev7mqndA614ZBo0H5oW-pBNdrqanspaey1QNzgzKqAwWedspJ0Uno-MCV1rKHrpFU8CV5te_dpPhr6zHbKaDz4wizj1u0SgvBmG7_C7JWFUHF6pK83oMuRcTkB7tJYYJ0bxm1O-22aLetNXanveAvDr3bbvL9ET54LvnLQw7oYByKLhfwiHFmpG5379V7rDj3f44xpDtbSlRr199u7Ffe6rOb9Qer-V8cipvV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15743709</pqid></control><display><type>article</type><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><source>Oxford University Press Journals</source><creator>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</creator><creatorcontrib>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</creatorcontrib><description>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/5.9.1279</identifier><identifier>PMID: 8872467</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Chromosomes, Human, Pair 11 - genetics ; Cytogenetics ; DNA Probes ; DNA, Satellite - genetics ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Human ; Humans ; In Situ Hybridization, Fluorescence ; Karyotyping ; Translocation, Genetic - genetics</subject><ispartof>Human molecular genetics, 1996-09, Vol.5 (9), p.1279-1288</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3196855$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8872467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Page, Scott L.</creatorcontrib><creatorcontrib>Shin, Jong-Chul</creatorcontrib><creatorcontrib>Han, Jin-Yeong</creatorcontrib><creatorcontrib>Andy Choo, K. H.</creatorcontrib><creatorcontrib>Shaffer, Lisa G.</creatorcontrib><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><title>Human molecular genetics</title><addtitle>Human Molecular Genetics</addtitle><description>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</description><subject>Biological and medical sciences</subject><subject>Chromosomes, Human, Pair 11 - genetics</subject><subject>Cytogenetics</subject><subject>DNA Probes</subject><subject>DNA, Satellite - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Human</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Karyotyping</subject><subject>Translocation, Genetic - genetics</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQhoMo6zh68yr0QTzZs0knnY-ju7rO4oogq8iChOp02o3b3RlTGXH_vRlnmKunKup9eCkeQp4zumLU8NPb6cdpuzIr1ijzgCyYkLRuqOYPyYIaKWppqHxMniD-pJRJwdUJOdFaNUKqBfl-ljzcbWKYc_U2_PYJQ76vLsdxizlB9liumMPscvXRu1uYA05YDTFVn2PnU8Y4B5ir6wQzjtFBDnGuLmKa_m1PyaMBRvTPDnNJvly8uz5f11ef3l-ev7mqndA614ZBo0H5oW-pBNdrqanspaey1QNzgzKqAwWedspJ0Uno-MCV1rKHrpFU8CV5te_dpPhr6zHbKaDz4wizj1u0SgvBmG7_C7JWFUHF6pK83oMuRcTkB7tJYYJ0bxm1O-22aLetNXanveAvDr3bbvL9ET54LvnLQw7oYByKLhfwiHFmpG5379V7rDj3f44xpDtbSlRr199u7Ffe6rOb9Qer-V8cipvV</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Page, Scott L.</creator><creator>Shin, Jong-Chul</creator><creator>Han, Jin-Yeong</creator><creator>Andy Choo, K. H.</creator><creator>Shaffer, Lisa G.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19960901</creationdate><title>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</title><author>Page, Scott L. ; Shin, Jong-Chul ; Han, Jin-Yeong ; Andy Choo, K. H. ; Shaffer, Lisa G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biological and medical sciences</topic><topic>Chromosomes, Human, Pair 11 - genetics</topic><topic>Cytogenetics</topic><topic>DNA Probes</topic><topic>DNA, Satellite - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Human</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Karyotyping</topic><topic>Translocation, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Page, Scott L.</creatorcontrib><creatorcontrib>Shin, Jong-Chul</creatorcontrib><creatorcontrib>Han, Jin-Yeong</creatorcontrib><creatorcontrib>Andy Choo, K. H.</creatorcontrib><creatorcontrib>Shaffer, Lisa G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Page, Scott L.</au><au>Shin, Jong-Chul</au><au>Han, Jin-Yeong</au><au>Andy Choo, K. H.</au><au>Shaffer, Lisa G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Human Molecular Genetics</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>5</volume><issue>9</issue><spage>1279</spage><epage>1288</epage><pages>1279-1288</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><abstract>Robertsonian translocations are the most common chromosomal rearrangements in humans. The vast majority of the ten possible nonhomologous types of Robertsonian translocations ascertained are rob(13q14q) and rob(14q21q). Recombination between homologous sequences on nonhomologous chromosomes has been proposed as a mechanism leading to the preferential formation of rob(13q14q) and rob(14q21q). However, little evidence exists to indicate whether the remaining less common Robertsonian translocations form through a similar mechanism. To better elucidate the mechanisms involved in Robertsonian translocation formation, we have used fluorescence in situ hybridization to localize the breakpoints in 56 nonhomologous Robertsonian translocations. This study revealed highly variable locations of breakpoints in seven types of the less common Robertsonians, while nearly all rob(13q14q) and rob(14q21q) analyzed displayed breakpoints in the same locations. Therefore, this study provides direct evidence that rob(13q14q) and rob(14q21q) form through a specific mechanism, possibly involving homologous recombination, which is distinct from the mechanism(s) that contributes to the formation of the remaining types of Robertsonian translocations.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>8872467</pmid><doi>10.1093/hmg/5.9.1279</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 1996-09, Vol.5 (9), p.1279-1288 |
issn | 0964-6906 1460-2083 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_78441185 |
source | Oxford University Press Journals |
subjects | Biological and medical sciences Chromosomes, Human, Pair 11 - genetics Cytogenetics DNA Probes DNA, Satellite - genetics Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Human Humans In Situ Hybridization, Fluorescence Karyotyping Translocation, Genetic - genetics |
title | Breakpoint Diversity Illustrates Distinct Mechanisms for Robertsonian Translocation Formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T06%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakpoint%20Diversity%20Illustrates%20Distinct%20Mechanisms%20for%20Robertsonian%20Translocation%20Formation&rft.jtitle=Human%20molecular%20genetics&rft.au=Page,%20Scott%20L.&rft.date=1996-09-01&rft.volume=5&rft.issue=9&rft.spage=1279&rft.epage=1288&rft.pages=1279-1288&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/5.9.1279&rft_dat=%3Cproquest_cross%3E15743709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-91a28a7efd506acd86806d6e0658f1cf797ba7ae0b7c64b6ab3f37886dab26043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15743709&rft_id=info:pmid/8872467&rfr_iscdi=true |