Loading…
Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite
The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary α-amylase in solution and on the surface of saliva-coated hydroxya...
Saved in:
Published in: | Archives of oral biology 1996-03, Vol.41 (3), p.291-298 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3 |
container_end_page | 298 |
container_issue | 3 |
container_start_page | 291 |
container_title | Archives of oral biology |
container_volume | 41 |
creator | Vacca-Smith, A.M. Venkitaraman, A.R. Quivey, R.G. Bowen, W.H. |
description | The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary α-amylase in solution and on the surface of saliva-coated hydroxyapatite (SHA) beads. The Gtf enzymes -B, -C and -C, when immobilized on to SHA beads, reduced the activity of adsorbed amylase; GtfD showed the highest inhibition of salivary amylase activity. The presence of glucan produced by immobilized GtfD did not further reduce amylase activity. The amount of amylase adsorbed on to hydroxyapatite beads was reduced when salivary amylase was added simultaneously with any of the Gtf enzymes, suggesting that amylase and Gtfs may compete with each other for binding sites on hydroxyapatite. Starch hydrolysates produced by SHA-surface-bound salivary amylase were tested for their effect on glucan production from sucrose by Gtf enzymes in solution and on SHA beads; glucan production by SHA-immobilized GtfB was stimulated in the presence of starch hydrolysates. Glucan synthesized by SHA-immobilized GtfB in the presence of starch hydrolysates was less susceptible to hydrolysis by the fungal enzyme mutanase than was glucan made by SHA-immobilized GtfB in the absence of starch hydrolysates. Glucan production by GtfB associated with streptococci immobilized on to SHA was also enhanced in the presence of starch hydrolysates. The adhesion of oral micro-organisms to SHA coated with glucan made in the presence and absence of starch hydrolysates was investigated, and some bacteria displayed higher adhesion activities for the glucan made in the presence of the hydrolysates. Therefore, the interaction of amylase and Gtf enzymes on a SHA surface may modulate the formation of glucan and the adherence of oral micro-organisms. |
doi_str_mv | 10.1016/0003-9969(95)00129-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78230865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0003996995001298</els_id><sourcerecordid>78230865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi1EVZbCG4DkE4JDqB2vnfiChKoWKlXqpXdrMp6wRtl4sZ2WSLwUL8IzNdtd9chpNDP__4_mY-ydFJ-lkOZcCKEqa439aPUnIWRtq_YFW8m2sZXUwrxkq2fJK_Y6559Lq42Rp-y0bZQWUq_Yn-uxUAIsIY6Zx57nkmhXIkZEGPiPYcKY56EkGHO_CDNl_hDKhv_7W8F2HpYBh9EvNki44XHkZUM8T6kHpKc8GMI9VBihkOeb2af4e4YdlFDoDTvpYcj09ljP2N3V5d3F9-rm9tv1xdebCteqLlXddSCwsa2sldISGw2NXWPvvdG99Maib0GuvVLWavAI3siua1SL1NmmV2fswyF2l-KviXJx25CRhgFGilN2TVsr0Rq9CNcHIaaYc6Le7VLYQpqdFG7P3O2Buj1QZ7V7Yu7axfb-mD91W_LPpiPkZf_lsKflx_tAyWUMNCL5kAiL8zH8_8AjaWmVIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78230865</pqid></control><display><type>article</type><title>Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite</title><source>Elsevier</source><creator>Vacca-Smith, A.M. ; Venkitaraman, A.R. ; Quivey, R.G. ; Bowen, W.H.</creator><creatorcontrib>Vacca-Smith, A.M. ; Venkitaraman, A.R. ; Quivey, R.G. ; Bowen, W.H.</creatorcontrib><description>The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary α-amylase in solution and on the surface of saliva-coated hydroxyapatite (SHA) beads. The Gtf enzymes -B, -C and -C, when immobilized on to SHA beads, reduced the activity of adsorbed amylase; GtfD showed the highest inhibition of salivary amylase activity. The presence of glucan produced by immobilized GtfD did not further reduce amylase activity. The amount of amylase adsorbed on to hydroxyapatite beads was reduced when salivary amylase was added simultaneously with any of the Gtf enzymes, suggesting that amylase and Gtfs may compete with each other for binding sites on hydroxyapatite. Starch hydrolysates produced by SHA-surface-bound salivary amylase were tested for their effect on glucan production from sucrose by Gtf enzymes in solution and on SHA beads; glucan production by SHA-immobilized GtfB was stimulated in the presence of starch hydrolysates. Glucan synthesized by SHA-immobilized GtfB in the presence of starch hydrolysates was less susceptible to hydrolysis by the fungal enzyme mutanase than was glucan made by SHA-immobilized GtfB in the absence of starch hydrolysates. Glucan production by GtfB associated with streptococci immobilized on to SHA was also enhanced in the presence of starch hydrolysates. The adhesion of oral micro-organisms to SHA coated with glucan made in the presence and absence of starch hydrolysates was investigated, and some bacteria displayed higher adhesion activities for the glucan made in the presence of the hydrolysates. Therefore, the interaction of amylase and Gtf enzymes on a SHA surface may modulate the formation of glucan and the adherence of oral micro-organisms.</description><identifier>ISSN: 0003-9969</identifier><identifier>EISSN: 1879-1506</identifier><identifier>DOI: 10.1016/0003-9969(95)00129-8</identifier><identifier>PMID: 8735015</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>adherence ; Adsorption ; Adult ; amylase ; Amylases - metabolism ; Bacterial Adhesion - physiology ; Bacterial Proteins - metabolism ; Binding, Competitive ; Dental Pellicle ; Dental Plaque - metabolism ; Dentistry ; Dextranase - metabolism ; Durapatite - metabolism ; Female ; Fungal Proteins - metabolism ; glucan ; Glucans - biosynthesis ; glucosyltransferase ; Glucosyltransferases - metabolism ; Glycoside Hydrolases - metabolism ; Humans ; Hydrolysis ; Saliva - enzymology ; Salivary Proteins and Peptides - metabolism ; starch ; Starch - metabolism ; Streptococcus - enzymology</subject><ispartof>Archives of oral biology, 1996-03, Vol.41 (3), p.291-298</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3</citedby><cites>FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8735015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vacca-Smith, A.M.</creatorcontrib><creatorcontrib>Venkitaraman, A.R.</creatorcontrib><creatorcontrib>Quivey, R.G.</creatorcontrib><creatorcontrib>Bowen, W.H.</creatorcontrib><title>Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite</title><title>Archives of oral biology</title><addtitle>Arch Oral Biol</addtitle><description>The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary α-amylase in solution and on the surface of saliva-coated hydroxyapatite (SHA) beads. The Gtf enzymes -B, -C and -C, when immobilized on to SHA beads, reduced the activity of adsorbed amylase; GtfD showed the highest inhibition of salivary amylase activity. The presence of glucan produced by immobilized GtfD did not further reduce amylase activity. The amount of amylase adsorbed on to hydroxyapatite beads was reduced when salivary amylase was added simultaneously with any of the Gtf enzymes, suggesting that amylase and Gtfs may compete with each other for binding sites on hydroxyapatite. Starch hydrolysates produced by SHA-surface-bound salivary amylase were tested for their effect on glucan production from sucrose by Gtf enzymes in solution and on SHA beads; glucan production by SHA-immobilized GtfB was stimulated in the presence of starch hydrolysates. Glucan synthesized by SHA-immobilized GtfB in the presence of starch hydrolysates was less susceptible to hydrolysis by the fungal enzyme mutanase than was glucan made by SHA-immobilized GtfB in the absence of starch hydrolysates. Glucan production by GtfB associated with streptococci immobilized on to SHA was also enhanced in the presence of starch hydrolysates. The adhesion of oral micro-organisms to SHA coated with glucan made in the presence and absence of starch hydrolysates was investigated, and some bacteria displayed higher adhesion activities for the glucan made in the presence of the hydrolysates. Therefore, the interaction of amylase and Gtf enzymes on a SHA surface may modulate the formation of glucan and the adherence of oral micro-organisms.</description><subject>adherence</subject><subject>Adsorption</subject><subject>Adult</subject><subject>amylase</subject><subject>Amylases - metabolism</subject><subject>Bacterial Adhesion - physiology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding, Competitive</subject><subject>Dental Pellicle</subject><subject>Dental Plaque - metabolism</subject><subject>Dentistry</subject><subject>Dextranase - metabolism</subject><subject>Durapatite - metabolism</subject><subject>Female</subject><subject>Fungal Proteins - metabolism</subject><subject>glucan</subject><subject>Glucans - biosynthesis</subject><subject>glucosyltransferase</subject><subject>Glucosyltransferases - metabolism</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Saliva - enzymology</subject><subject>Salivary Proteins and Peptides - metabolism</subject><subject>starch</subject><subject>Starch - metabolism</subject><subject>Streptococcus - enzymology</subject><issn>0003-9969</issn><issn>1879-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi1EVZbCG4DkE4JDqB2vnfiChKoWKlXqpXdrMp6wRtl4sZ2WSLwUL8IzNdtd9chpNDP__4_mY-ydFJ-lkOZcCKEqa439aPUnIWRtq_YFW8m2sZXUwrxkq2fJK_Y6559Lq42Rp-y0bZQWUq_Yn-uxUAIsIY6Zx57nkmhXIkZEGPiPYcKY56EkGHO_CDNl_hDKhv_7W8F2HpYBh9EvNki44XHkZUM8T6kHpKc8GMI9VBihkOeb2af4e4YdlFDoDTvpYcj09ljP2N3V5d3F9-rm9tv1xdebCteqLlXddSCwsa2sldISGw2NXWPvvdG99Maib0GuvVLWavAI3siua1SL1NmmV2fswyF2l-KviXJx25CRhgFGilN2TVsr0Rq9CNcHIaaYc6Le7VLYQpqdFG7P3O2Buj1QZ7V7Yu7axfb-mD91W_LPpiPkZf_lsKflx_tAyWUMNCL5kAiL8zH8_8AjaWmVIw</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Vacca-Smith, A.M.</creator><creator>Venkitaraman, A.R.</creator><creator>Quivey, R.G.</creator><creator>Bowen, W.H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960301</creationdate><title>Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite</title><author>Vacca-Smith, A.M. ; Venkitaraman, A.R. ; Quivey, R.G. ; Bowen, W.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>adherence</topic><topic>Adsorption</topic><topic>Adult</topic><topic>amylase</topic><topic>Amylases - metabolism</topic><topic>Bacterial Adhesion - physiology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding, Competitive</topic><topic>Dental Pellicle</topic><topic>Dental Plaque - metabolism</topic><topic>Dentistry</topic><topic>Dextranase - metabolism</topic><topic>Durapatite - metabolism</topic><topic>Female</topic><topic>Fungal Proteins - metabolism</topic><topic>glucan</topic><topic>Glucans - biosynthesis</topic><topic>glucosyltransferase</topic><topic>Glucosyltransferases - metabolism</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Saliva - enzymology</topic><topic>Salivary Proteins and Peptides - metabolism</topic><topic>starch</topic><topic>Starch - metabolism</topic><topic>Streptococcus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vacca-Smith, A.M.</creatorcontrib><creatorcontrib>Venkitaraman, A.R.</creatorcontrib><creatorcontrib>Quivey, R.G.</creatorcontrib><creatorcontrib>Bowen, W.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of oral biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vacca-Smith, A.M.</au><au>Venkitaraman, A.R.</au><au>Quivey, R.G.</au><au>Bowen, W.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite</atitle><jtitle>Archives of oral biology</jtitle><addtitle>Arch Oral Biol</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>41</volume><issue>3</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>0003-9969</issn><eissn>1879-1506</eissn><abstract>The salivary pellicle consists of various proteins and glycoproteins which may interact with one another. Experiments were performed to elucidate the interactions of streptococcal glucosyltransferase (Gtf) enzymes with human salivary α-amylase in solution and on the surface of saliva-coated hydroxyapatite (SHA) beads. The Gtf enzymes -B, -C and -C, when immobilized on to SHA beads, reduced the activity of adsorbed amylase; GtfD showed the highest inhibition of salivary amylase activity. The presence of glucan produced by immobilized GtfD did not further reduce amylase activity. The amount of amylase adsorbed on to hydroxyapatite beads was reduced when salivary amylase was added simultaneously with any of the Gtf enzymes, suggesting that amylase and Gtfs may compete with each other for binding sites on hydroxyapatite. Starch hydrolysates produced by SHA-surface-bound salivary amylase were tested for their effect on glucan production from sucrose by Gtf enzymes in solution and on SHA beads; glucan production by SHA-immobilized GtfB was stimulated in the presence of starch hydrolysates. Glucan synthesized by SHA-immobilized GtfB in the presence of starch hydrolysates was less susceptible to hydrolysis by the fungal enzyme mutanase than was glucan made by SHA-immobilized GtfB in the absence of starch hydrolysates. Glucan production by GtfB associated with streptococci immobilized on to SHA was also enhanced in the presence of starch hydrolysates. The adhesion of oral micro-organisms to SHA coated with glucan made in the presence and absence of starch hydrolysates was investigated, and some bacteria displayed higher adhesion activities for the glucan made in the presence of the hydrolysates. Therefore, the interaction of amylase and Gtf enzymes on a SHA surface may modulate the formation of glucan and the adherence of oral micro-organisms.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>8735015</pmid><doi>10.1016/0003-9969(95)00129-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9969 |
ispartof | Archives of oral biology, 1996-03, Vol.41 (3), p.291-298 |
issn | 0003-9969 1879-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_78230865 |
source | Elsevier |
subjects | adherence Adsorption Adult amylase Amylases - metabolism Bacterial Adhesion - physiology Bacterial Proteins - metabolism Binding, Competitive Dental Pellicle Dental Plaque - metabolism Dentistry Dextranase - metabolism Durapatite - metabolism Female Fungal Proteins - metabolism glucan Glucans - biosynthesis glucosyltransferase Glucosyltransferases - metabolism Glycoside Hydrolases - metabolism Humans Hydrolysis Saliva - enzymology Salivary Proteins and Peptides - metabolism starch Starch - metabolism Streptococcus - enzymology |
title | Interactions of streptococcal glucosyltransferases with α-amylase and starch on the surface of saliva-coated hydroxyapatite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T14%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20streptococcal%20glucosyltransferases%20with%20%CE%B1-amylase%20and%20starch%20on%20the%20surface%20of%20saliva-coated%20hydroxyapatite&rft.jtitle=Archives%20of%20oral%20biology&rft.au=Vacca-Smith,%20A.M.&rft.date=1996-03-01&rft.volume=41&rft.issue=3&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=0003-9969&rft.eissn=1879-1506&rft_id=info:doi/10.1016/0003-9969(95)00129-8&rft_dat=%3Cproquest_cross%3E78230865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2bba0c798123351c75a794cfdd65f1d69cd8a14d33995adcad61bb738ceb97f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=78230865&rft_id=info:pmid/8735015&rfr_iscdi=true |