Loading…

Pairwise end sequencing: a unified approach to genomic mapping and sequencing

Strategies for large-scale genomic DNA sequencing currently require physical mapping, followed by detailed mapping, and finally sequencing. The level of mapping detail determines the amount of effort, or sequence redundancy, required to finish a project. Current strategies attempt to find a balance...

Full description

Saved in:
Bibliographic Details
Published in:Genomics (San Diego, Calif.) Calif.), 1995-03, Vol.26 (2), p.345-353
Main Authors: Roach, Jared C., Boysen, Cecilie, Wang, Kai, Hood, Leroy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3
cites cdi_FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3
container_end_page 353
container_issue 2
container_start_page 345
container_title Genomics (San Diego, Calif.)
container_volume 26
creator Roach, Jared C.
Boysen, Cecilie
Wang, Kai
Hood, Leroy
description Strategies for large-scale genomic DNA sequencing currently require physical mapping, followed by detailed mapping, and finally sequencing. The level of mapping detail determines the amount of effort, or sequence redundancy, required to finish a project. Current strategies attempt to find a balance between mapping and sequencing efforts. One such approach is to employ strategies that use sequence data to build physical maps. Such maps alleviate the need for prior mapping and reduce the final required sequence redundancy. To this end, the utility of correlating pairs of sequence data derived from both ends of subcloned templates is well recognized. However, optimal strategies employing such pairwise data have not been established. In the present work, we simulate and analyze the parameters of pairwise sequencing projects including template length, sequence read length, and total sequence redundancy. One pairwise strategy based on sequencing both ends of plasmid subclones is recommended and illustrated with raw data simulations. We find that pairwise strategies are effective with both small (cosmid) and large (megaYAC) targets and produce ordered sequence data with a high level of mapping completeness. They are ideal for fine-scale mapping and gene finding and as initial steps for either a high- or a low-redundancy sequencing effort. Such strategies are highly automatable.
doi_str_mv 10.1016/0888-7543(95)80219-C
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77376513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>088875439580219C</els_id><sourcerecordid>77376513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3</originalsourceid><addsrcrecordid>eNp9kF1rFDEUhkOx1LX6DyrmQsRejCaTj0m8EGTRVmhRaHsdziQn25SdmW2ya_Hfm3WXBW-8CIGc55zz5iHkjLMPnHH9kRljmk5J8d6qc8Nabpv5EZlxZmxjtNTPyOyAPCcvSnlgjFlh2hNy0mnGpeYzcv0TUn5KBSmOgRZ83ODo07j4RIFuxhQTBgqrVZ7A39P1RBc4TkPydKiPFaPwT9dLchxhWfDV_j4ld9--3s4vm6sfF9_nX64aL023bkKQHllEoYytEdFb0bc6CtEFZTFEiCwqCbqeXkvO0VhoufK874Hrvhen5N1ubg1Wd5e1G1LxuFzCiNOmuK4TnVZcVFDuQJ-nUjJGt8ppgPzbcea2Ft1Wkdsqcla5vxbdvLa93s_f9AOGQ9NeW62_3deheFjGDPX75YAJxZjR2-1vdliEycEiV-TupmVcMK5YqztZic87AqutXwmzKz5VlxhSRr92YUr_T_oHd4WXmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77376513</pqid></control><display><type>article</type><title>Pairwise end sequencing: a unified approach to genomic mapping and sequencing</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Roach, Jared C. ; Boysen, Cecilie ; Wang, Kai ; Hood, Leroy</creator><creatorcontrib>Roach, Jared C. ; Boysen, Cecilie ; Wang, Kai ; Hood, Leroy</creatorcontrib><description>Strategies for large-scale genomic DNA sequencing currently require physical mapping, followed by detailed mapping, and finally sequencing. The level of mapping detail determines the amount of effort, or sequence redundancy, required to finish a project. Current strategies attempt to find a balance between mapping and sequencing efforts. One such approach is to employ strategies that use sequence data to build physical maps. Such maps alleviate the need for prior mapping and reduce the final required sequence redundancy. To this end, the utility of correlating pairs of sequence data derived from both ends of subcloned templates is well recognized. However, optimal strategies employing such pairwise data have not been established. In the present work, we simulate and analyze the parameters of pairwise sequencing projects including template length, sequence read length, and total sequence redundancy. One pairwise strategy based on sequencing both ends of plasmid subclones is recommended and illustrated with raw data simulations. We find that pairwise strategies are effective with both small (cosmid) and large (megaYAC) targets and produce ordered sequence data with a high level of mapping completeness. They are ideal for fine-scale mapping and gene finding and as initial steps for either a high- or a low-redundancy sequencing effort. Such strategies are highly automatable.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/0888-7543(95)80219-C</identifier><identifier>PMID: 7601461</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Base Composition ; Biological and medical sciences ; chromosome mapping ; Chromosome Mapping - methods ; Computer Simulation ; Cosmids - genetics ; Diverse techniques ; Fundamental and applied biological sciences. Psychology ; Genome ; Molecular and cellular biology ; sequence analysis ; Sequence Analysis, DNA - methods ; Templates, Genetic</subject><ispartof>Genomics (San Diego, Calif.), 1995-03, Vol.26 (2), p.345-353</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3</citedby><cites>FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3500863$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7601461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roach, Jared C.</creatorcontrib><creatorcontrib>Boysen, Cecilie</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><title>Pairwise end sequencing: a unified approach to genomic mapping and sequencing</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Strategies for large-scale genomic DNA sequencing currently require physical mapping, followed by detailed mapping, and finally sequencing. The level of mapping detail determines the amount of effort, or sequence redundancy, required to finish a project. Current strategies attempt to find a balance between mapping and sequencing efforts. One such approach is to employ strategies that use sequence data to build physical maps. Such maps alleviate the need for prior mapping and reduce the final required sequence redundancy. To this end, the utility of correlating pairs of sequence data derived from both ends of subcloned templates is well recognized. However, optimal strategies employing such pairwise data have not been established. In the present work, we simulate and analyze the parameters of pairwise sequencing projects including template length, sequence read length, and total sequence redundancy. One pairwise strategy based on sequencing both ends of plasmid subclones is recommended and illustrated with raw data simulations. We find that pairwise strategies are effective with both small (cosmid) and large (megaYAC) targets and produce ordered sequence data with a high level of mapping completeness. They are ideal for fine-scale mapping and gene finding and as initial steps for either a high- or a low-redundancy sequencing effort. Such strategies are highly automatable.</description><subject>Base Composition</subject><subject>Biological and medical sciences</subject><subject>chromosome mapping</subject><subject>Chromosome Mapping - methods</subject><subject>Computer Simulation</subject><subject>Cosmids - genetics</subject><subject>Diverse techniques</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome</subject><subject>Molecular and cellular biology</subject><subject>sequence analysis</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Templates, Genetic</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kF1rFDEUhkOx1LX6DyrmQsRejCaTj0m8EGTRVmhRaHsdziQn25SdmW2ya_Hfm3WXBW-8CIGc55zz5iHkjLMPnHH9kRljmk5J8d6qc8Nabpv5EZlxZmxjtNTPyOyAPCcvSnlgjFlh2hNy0mnGpeYzcv0TUn5KBSmOgRZ83ODo07j4RIFuxhQTBgqrVZ7A39P1RBc4TkPydKiPFaPwT9dLchxhWfDV_j4ld9--3s4vm6sfF9_nX64aL023bkKQHllEoYytEdFb0bc6CtEFZTFEiCwqCbqeXkvO0VhoufK874Hrvhen5N1ubg1Wd5e1G1LxuFzCiNOmuK4TnVZcVFDuQJ-nUjJGt8ppgPzbcea2Ft1Wkdsqcla5vxbdvLa93s_f9AOGQ9NeW62_3deheFjGDPX75YAJxZjR2-1vdliEycEiV-TupmVcMK5YqztZic87AqutXwmzKz5VlxhSRr92YUr_T_oHd4WXmg</recordid><startdate>19950320</startdate><enddate>19950320</enddate><creator>Roach, Jared C.</creator><creator>Boysen, Cecilie</creator><creator>Wang, Kai</creator><creator>Hood, Leroy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19950320</creationdate><title>Pairwise end sequencing: a unified approach to genomic mapping and sequencing</title><author>Roach, Jared C. ; Boysen, Cecilie ; Wang, Kai ; Hood, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Base Composition</topic><topic>Biological and medical sciences</topic><topic>chromosome mapping</topic><topic>Chromosome Mapping - methods</topic><topic>Computer Simulation</topic><topic>Cosmids - genetics</topic><topic>Diverse techniques</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome</topic><topic>Molecular and cellular biology</topic><topic>sequence analysis</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Templates, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roach, Jared C.</creatorcontrib><creatorcontrib>Boysen, Cecilie</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hood, Leroy</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roach, Jared C.</au><au>Boysen, Cecilie</au><au>Wang, Kai</au><au>Hood, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairwise end sequencing: a unified approach to genomic mapping and sequencing</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>1995-03-20</date><risdate>1995</risdate><volume>26</volume><issue>2</issue><spage>345</spage><epage>353</epage><pages>345-353</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Strategies for large-scale genomic DNA sequencing currently require physical mapping, followed by detailed mapping, and finally sequencing. The level of mapping detail determines the amount of effort, or sequence redundancy, required to finish a project. Current strategies attempt to find a balance between mapping and sequencing efforts. One such approach is to employ strategies that use sequence data to build physical maps. Such maps alleviate the need for prior mapping and reduce the final required sequence redundancy. To this end, the utility of correlating pairs of sequence data derived from both ends of subcloned templates is well recognized. However, optimal strategies employing such pairwise data have not been established. In the present work, we simulate and analyze the parameters of pairwise sequencing projects including template length, sequence read length, and total sequence redundancy. One pairwise strategy based on sequencing both ends of plasmid subclones is recommended and illustrated with raw data simulations. We find that pairwise strategies are effective with both small (cosmid) and large (megaYAC) targets and produce ordered sequence data with a high level of mapping completeness. They are ideal for fine-scale mapping and gene finding and as initial steps for either a high- or a low-redundancy sequencing effort. Such strategies are highly automatable.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>7601461</pmid><doi>10.1016/0888-7543(95)80219-C</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 1995-03, Vol.26 (2), p.345-353
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_77376513
source ScienceDirect Freedom Collection 2022-2024
subjects Base Composition
Biological and medical sciences
chromosome mapping
Chromosome Mapping - methods
Computer Simulation
Cosmids - genetics
Diverse techniques
Fundamental and applied biological sciences. Psychology
Genome
Molecular and cellular biology
sequence analysis
Sequence Analysis, DNA - methods
Templates, Genetic
title Pairwise end sequencing: a unified approach to genomic mapping and sequencing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairwise%20end%20sequencing:%20a%20unified%20approach%20to%20genomic%20mapping%20and%20sequencing&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Roach,%20Jared%20C.&rft.date=1995-03-20&rft.volume=26&rft.issue=2&rft.spage=345&rft.epage=353&rft.pages=345-353&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/0888-7543(95)80219-C&rft_dat=%3Cproquest_cross%3E77376513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-dd4ce0fe3589088ec93b26f337d59edfaf0f54a654ab6411e89a215c1bba16bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=77376513&rft_id=info:pmid/7601461&rfr_iscdi=true