Loading…

The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain

The establishment of cormorant breeding colonies inland within south‐east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence var...

Full description

Saved in:
Bibliographic Details
Published in:Heredity 2001-01, Vol.86 (1), p.45-53
Main Authors: Winney, B. J., Litton, C. D., Parkin, D. T., Feare, C. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863
cites cdi_FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863
container_end_page 53
container_issue 1
container_start_page 45
container_title Heredity
container_volume 86
creator Winney, B. J.
Litton, C. D.
Parkin, D. T.
Feare, C. J.
description The establishment of cormorant breeding colonies inland within south‐east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence variation of the control (D‐loop) region of the mitochondrial genome. Samples of tissue were obtained from 334 individuals from across the species range in western Europe from both subspecies (Phalacrocorax carbo carbo and P. c. sinensis) and 84 birds from two inland breeding colonies in Britain. Single‐strand conformation polymorphism (SSCP) was used to assess mitochondrial variation among samples, revealing four haplotypes. The samples from the traditional breeding colonies clustered into three distinct phylogeographic groupings: Norway–Scotland, Wales–England–Iles des Chausey and the rest of Continental Europe. These results only partly agree with the traditional subspecific taxonomic groupings and are slightly at variance with results using microsatellite DNA frequencies, and a hypothesis using results from both studies is advanced. The subspecific origin of the inland colonies was investigated using maximum likelihood and Bayesian models.
doi_str_mv 10.1046/j.1365-2540.2001.00807.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77048336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18250835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863</originalsourceid><addsrcrecordid>eNqNkc9LHDEcxYNUdLX-CyV46G2m3ySTmQz0ouKPgqDIHnoLSSbRLLOTNdnB9b9vxl1b6EVP-ZL3eQ8eDyFMoCRQ1T8WJWE1LyivoKQApAQQ0JSbPTT7K3xBs6yIAurm9yE6SmkBAKyh7QE6JIS2QpBqhtz8yeI06rSyxjtvcIj-0Q84OLzOih96NXRYR2s7PzxiE_oweJvedRPiMkQ1rPH9k-qViSH_qA02KuqQ3fg8-rXyw1e071Sf7MnuPUbzq8v5xU1xe3f96-LstjCciabQlDDtaEtZLUythSWirV1HteKuFRSc4ZRrWrmuaZjqRMs7JWqitNEiH-wYfd_GrmJ4Hm1ay6VPxva5hA1jkk0DlWDsY5AIykEwnsHT_8BFGOOQO0jKAGhV1RMktlDun1K0Tq6iX6r4KgnIaTC5kNMuctpFToPJt8HkJlu_7fJHvbTdP-NuoQz83AIvvrevnw6WN5cP-WB_ABPHo_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230024465</pqid></control><display><type>article</type><title>The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain</title><source>Nature</source><creator>Winney, B. J. ; Litton, C. D. ; Parkin, D. T. ; Feare, C. J.</creator><creatorcontrib>Winney, B. J. ; Litton, C. D. ; Parkin, D. T. ; Feare, C. J.</creatorcontrib><description>The establishment of cormorant breeding colonies inland within south‐east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence variation of the control (D‐loop) region of the mitochondrial genome. Samples of tissue were obtained from 334 individuals from across the species range in western Europe from both subspecies (Phalacrocorax carbo carbo and P. c. sinensis) and 84 birds from two inland breeding colonies in Britain. Single‐strand conformation polymorphism (SSCP) was used to assess mitochondrial variation among samples, revealing four haplotypes. The samples from the traditional breeding colonies clustered into three distinct phylogeographic groupings: Norway–Scotland, Wales–England–Iles des Chausey and the rest of Continental Europe. These results only partly agree with the traditional subspecific taxonomic groupings and are slightly at variance with results using microsatellite DNA frequencies, and a hypothesis using results from both studies is advanced. The subspecific origin of the inland colonies was investigated using maximum likelihood and Bayesian models.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>EISSN: 0018-067X</identifier><identifier>DOI: 10.1046/j.1365-2540.2001.00807.x</identifier><identifier>PMID: 11298814</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>Oxford UK: Blackwell Science Ltd</publisher><subject>Animals ; Bayes Theorem ; Birds - classification ; Birds - genetics ; Brackish ; Breeding ; cormorants ; D‐loop ; Freshwater ; inland breeding ; Likelihood Functions ; Marine ; Phalacrocorax carbo ; Phalacrocorax carbo carbo ; Phalacrocorax carbo sinensis ; Phylogeny ; phylogeography ; Polymorphism, Single-Stranded Conformational ; population genetics ; SSCP ; United Kingdom</subject><ispartof>Heredity, 2001-01, Vol.86 (1), p.45-53</ispartof><rights>Copyright Blackwell Science Ltd. Jan 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863</citedby><cites>FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11298814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Winney, B. J.</creatorcontrib><creatorcontrib>Litton, C. D.</creatorcontrib><creatorcontrib>Parkin, D. T.</creatorcontrib><creatorcontrib>Feare, C. J.</creatorcontrib><title>The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>The establishment of cormorant breeding colonies inland within south‐east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence variation of the control (D‐loop) region of the mitochondrial genome. Samples of tissue were obtained from 334 individuals from across the species range in western Europe from both subspecies (Phalacrocorax carbo carbo and P. c. sinensis) and 84 birds from two inland breeding colonies in Britain. Single‐strand conformation polymorphism (SSCP) was used to assess mitochondrial variation among samples, revealing four haplotypes. The samples from the traditional breeding colonies clustered into three distinct phylogeographic groupings: Norway–Scotland, Wales–England–Iles des Chausey and the rest of Continental Europe. These results only partly agree with the traditional subspecific taxonomic groupings and are slightly at variance with results using microsatellite DNA frequencies, and a hypothesis using results from both studies is advanced. The subspecific origin of the inland colonies was investigated using maximum likelihood and Bayesian models.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Birds - classification</subject><subject>Birds - genetics</subject><subject>Brackish</subject><subject>Breeding</subject><subject>cormorants</subject><subject>D‐loop</subject><subject>Freshwater</subject><subject>inland breeding</subject><subject>Likelihood Functions</subject><subject>Marine</subject><subject>Phalacrocorax carbo</subject><subject>Phalacrocorax carbo carbo</subject><subject>Phalacrocorax carbo sinensis</subject><subject>Phylogeny</subject><subject>phylogeography</subject><subject>Polymorphism, Single-Stranded Conformational</subject><subject>population genetics</subject><subject>SSCP</subject><subject>United Kingdom</subject><issn>0018-067X</issn><issn>1365-2540</issn><issn>0018-067X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkc9LHDEcxYNUdLX-CyV46G2m3ySTmQz0ouKPgqDIHnoLSSbRLLOTNdnB9b9vxl1b6EVP-ZL3eQ8eDyFMoCRQ1T8WJWE1LyivoKQApAQQ0JSbPTT7K3xBs6yIAurm9yE6SmkBAKyh7QE6JIS2QpBqhtz8yeI06rSyxjtvcIj-0Q84OLzOih96NXRYR2s7PzxiE_oweJvedRPiMkQ1rPH9k-qViSH_qA02KuqQ3fg8-rXyw1e071Sf7MnuPUbzq8v5xU1xe3f96-LstjCciabQlDDtaEtZLUythSWirV1HteKuFRSc4ZRrWrmuaZjqRMs7JWqitNEiH-wYfd_GrmJ4Hm1ay6VPxva5hA1jkk0DlWDsY5AIykEwnsHT_8BFGOOQO0jKAGhV1RMktlDun1K0Tq6iX6r4KgnIaTC5kNMuctpFToPJt8HkJlu_7fJHvbTdP-NuoQz83AIvvrevnw6WN5cP-WB_ABPHo_o</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Winney, B. J.</creator><creator>Litton, C. D.</creator><creator>Parkin, D. T.</creator><creator>Feare, C. J.</creator><general>Blackwell Science Ltd</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain</title><author>Winney, B. J. ; Litton, C. D. ; Parkin, D. T. ; Feare, C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Birds - classification</topic><topic>Birds - genetics</topic><topic>Brackish</topic><topic>Breeding</topic><topic>cormorants</topic><topic>D‐loop</topic><topic>Freshwater</topic><topic>inland breeding</topic><topic>Likelihood Functions</topic><topic>Marine</topic><topic>Phalacrocorax carbo</topic><topic>Phalacrocorax carbo carbo</topic><topic>Phalacrocorax carbo sinensis</topic><topic>Phylogeny</topic><topic>phylogeography</topic><topic>Polymorphism, Single-Stranded Conformational</topic><topic>population genetics</topic><topic>SSCP</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winney, B. J.</creatorcontrib><creatorcontrib>Litton, C. D.</creatorcontrib><creatorcontrib>Parkin, D. T.</creatorcontrib><creatorcontrib>Feare, C. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winney, B. J.</au><au>Litton, C. D.</au><au>Parkin, D. T.</au><au>Feare, C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2001-01</date><risdate>2001</risdate><volume>86</volume><issue>1</issue><spage>45</spage><epage>53</epage><pages>45-53</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><eissn>0018-067X</eissn><coden>HDTYAT</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>The establishment of cormorant breeding colonies inland within south‐east Britain since 1981 is a matter of major conservation and pest management concern. This study was initiated to investigate the subspecific origin of two recently established breeding colonies. The analysis examined sequence variation of the control (D‐loop) region of the mitochondrial genome. Samples of tissue were obtained from 334 individuals from across the species range in western Europe from both subspecies (Phalacrocorax carbo carbo and P. c. sinensis) and 84 birds from two inland breeding colonies in Britain. Single‐strand conformation polymorphism (SSCP) was used to assess mitochondrial variation among samples, revealing four haplotypes. The samples from the traditional breeding colonies clustered into three distinct phylogeographic groupings: Norway–Scotland, Wales–England–Iles des Chausey and the rest of Continental Europe. These results only partly agree with the traditional subspecific taxonomic groupings and are slightly at variance with results using microsatellite DNA frequencies, and a hypothesis using results from both studies is advanced. The subspecific origin of the inland colonies was investigated using maximum likelihood and Bayesian models.</abstract><cop>Oxford UK</cop><pub>Blackwell Science Ltd</pub><pmid>11298814</pmid><doi>10.1046/j.1365-2540.2001.00807.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2001-01, Vol.86 (1), p.45-53
issn 0018-067X
1365-2540
0018-067X
language eng
recordid cdi_proquest_miscellaneous_77048336
source Nature
subjects Animals
Bayes Theorem
Birds - classification
Birds - genetics
Brackish
Breeding
cormorants
D‐loop
Freshwater
inland breeding
Likelihood Functions
Marine
Phalacrocorax carbo
Phalacrocorax carbo carbo
Phalacrocorax carbo sinensis
Phylogeny
phylogeography
Polymorphism, Single-Stranded Conformational
population genetics
SSCP
United Kingdom
title The subspecific origin of the inland breeding colonies of the cormorant Phalacrocorax carbo in Britain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20subspecific%20origin%20of%20the%20inland%20breeding%20colonies%20of%20the%20cormorant%20Phalacrocorax%20carbo%20in%20Britain&rft.jtitle=Heredity&rft.au=Winney,%20B.%20J.&rft.date=2001-01&rft.volume=86&rft.issue=1&rft.spage=45&rft.epage=53&rft.pages=45-53&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1046/j.1365-2540.2001.00807.x&rft_dat=%3Cproquest_cross%3E18250835%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5387-b213bf292368c6b8e1896fd2ba5f9820fc525b24fd773ad895da861abcb8a863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230024465&rft_id=info:pmid/11298814&rfr_iscdi=true