Loading…

Solar particle precipitation into the polar atmosphere and their dependence on hemisphere and local time

The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for pr...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2010-03, Vol.45 (5), p.632-637
Main Authors: Bornebusch, J.P., Wissing, J.M., Kallenrode, M.-B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2009.11.008