Loading…

Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence

To develop an alternative dating tool for the Antarctic Peninsula (where the 14C method requires large, spatially variable reservoir corrections), we tested the clock‐zeroing assumption of photon‐stimulated luminescence (PSL) dating using a variety of PSL procedures. At ice shelf edges around the An...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Earth Surface 2010-09, Vol.115 (F3), p.n/a
Main Authors: Berger, G. W., Murray, A. S., Thomsen, K. J., Domack, E. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883
cites cdi_FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883
container_end_page n/a
container_issue F3
container_start_page
container_title Journal of Geophysical Research: Earth Surface
container_volume 115
creator Berger, G. W.
Murray, A. S.
Thomsen, K. J.
Domack, E. W.
description To develop an alternative dating tool for the Antarctic Peninsula (where the 14C method requires large, spatially variable reservoir corrections), we tested the clock‐zeroing assumption of photon‐stimulated luminescence (PSL) dating using a variety of PSL procedures. At ice shelf edges around the Antarctic Peninsula, sediment‐water‐interface (“zero‐age” analogs), silt‐rich short cores were collected in 2001–2003, originally only for fine silt dating tests. Later access to suitable instrumentation also permitted testing the potential of single‐grain quartz (SGQ) dating of sand grains from these cores. For the fine silt grains we employed multiple‐aliquot and single‐aliquot methods to obtain last daylight exposure age estimates from near‐core‐top material. With the sand fraction we employed automated SGQ PSL methods to isolate the youngest grains. Five of six fine silt samples gave unreasonably large age estimates (>20 ka), with the sixth sample yielding a multiple‐aliquot short‐bleach age estimate of 1.1 ± 0.6 ka. In contrast, five of seven sand samples yielded geologically reasonable last daylight exposure ages of 0.2–0.6 ka. These SGQ results are also remarkable when compared to published 14C ages of 1 ka to 9.7 ka from core top living calcite and acid‐insoluble organic matter. These SGQ results establish the likely utility of this single‐grain dating approach in such settings to provide chronologies for calving line histories of ice shelves. To take advantage of this utility, core collection should employ large‐diameter coring devices (e.g., Kasten and multicorers). A caveat is that large numbers (e.g., ∼10,000) of quartz grains may need analysis to provide acceptable statistics for useful age calculations.
doi_str_mv 10.1029/2009JF001415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754560873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762112606</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883</originalsourceid><addsrcrecordid>eNp9kV1LHDEUhoO04KLe9QeEQmkvOvbke9I7te7aRdoiilclZDKZNXY2uyYz-PHrm2VFSi_MRQKH53lzToLQOwKHBKj-QgH0fApAOBE7aEKJkBWlQN-gSanVFVCqdtFBzrdQFheSA5mg39_sEOICB-dxvvF9h3278HhpU4il4tuw9HHIX_ERjv4e2_U6ray7wWPeWJut99Ui2RDx3WjT8IT7cVnU7Hx0fh-97Wyf_cHzuYeupqeXJ2fV-c_Z95Oj88pyWqvKCscoccK3jVS04dxKSaHjuq5bIIQ2wDXjRIuGSumaDpRoG-i0AOaEqmu2hz5uc0t3d6PPg1mG0kHf2-hXYzZKlHmhVqyQn14liZK03ChBFvT9f-jtakyxzGFqSQgIxkiBPm8hl1Y5J9-ZdQrl9R4NAbP5F_PvvxT8w3Omzc72XbLRhfziUMY011IVjmy5-9D7x1czzXx2MZVq41RbJ-TBP7w4Nv0xJVEJc_1jZugcLo6vyS-j2V_Gxqcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861105331</pqid></control><display><type>article</type><title>Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence</title><source>Wiley</source><source>Wiley Online Library AGU Backfiles</source><creator>Berger, G. W. ; Murray, A. S. ; Thomsen, K. J. ; Domack, E. W.</creator><creatorcontrib>Berger, G. W. ; Murray, A. S. ; Thomsen, K. J. ; Domack, E. W.</creatorcontrib><description>To develop an alternative dating tool for the Antarctic Peninsula (where the 14C method requires large, spatially variable reservoir corrections), we tested the clock‐zeroing assumption of photon‐stimulated luminescence (PSL) dating using a variety of PSL procedures. At ice shelf edges around the Antarctic Peninsula, sediment‐water‐interface (“zero‐age” analogs), silt‐rich short cores were collected in 2001–2003, originally only for fine silt dating tests. Later access to suitable instrumentation also permitted testing the potential of single‐grain quartz (SGQ) dating of sand grains from these cores. For the fine silt grains we employed multiple‐aliquot and single‐aliquot methods to obtain last daylight exposure age estimates from near‐core‐top material. With the sand fraction we employed automated SGQ PSL methods to isolate the youngest grains. Five of six fine silt samples gave unreasonably large age estimates (&gt;20 ka), with the sixth sample yielding a multiple‐aliquot short‐bleach age estimate of 1.1 ± 0.6 ka. In contrast, five of seven sand samples yielded geologically reasonable last daylight exposure ages of 0.2–0.6 ka. These SGQ results are also remarkable when compared to published 14C ages of 1 ka to 9.7 ka from core top living calcite and acid‐insoluble organic matter. These SGQ results establish the likely utility of this single‐grain dating approach in such settings to provide chronologies for calving line histories of ice shelves. To take advantage of this utility, core collection should employ large‐diameter coring devices (e.g., Kasten and multicorers). A caveat is that large numbers (e.g., ∼10,000) of quartz grains may need analysis to provide acceptable statistics for useful age calculations.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2009JF001415</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Age ; Calcite ; Climate change ; Cores ; Cryosphere ; Dating ; Dating techniques ; Earth ; Earth sciences ; Earth, ocean, space ; Estimates ; Exact sciences and technology ; Geological time ; Geophysics ; glacimarine ; Grains ; Ice ; ice shelf ; Ice shelves ; Instrumentation ; Luminescence ; Marine geology ; Marine sediments ; Organic matter ; Quartz ; Samples ; Sand ; Silt ; Statistical methods</subject><ispartof>Journal of Geophysical Research: Earth Surface, 2010-09, Vol.115 (F3), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883</citedby><cites>FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JF001415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JF001415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,783,787,11528,27938,27939,46482,46906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23394967$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berger, G. W.</creatorcontrib><creatorcontrib>Murray, A. S.</creatorcontrib><creatorcontrib>Thomsen, K. J.</creatorcontrib><creatorcontrib>Domack, E. W.</creatorcontrib><title>Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence</title><title>Journal of Geophysical Research: Earth Surface</title><addtitle>J. Geophys. Res</addtitle><description>To develop an alternative dating tool for the Antarctic Peninsula (where the 14C method requires large, spatially variable reservoir corrections), we tested the clock‐zeroing assumption of photon‐stimulated luminescence (PSL) dating using a variety of PSL procedures. At ice shelf edges around the Antarctic Peninsula, sediment‐water‐interface (“zero‐age” analogs), silt‐rich short cores were collected in 2001–2003, originally only for fine silt dating tests. Later access to suitable instrumentation also permitted testing the potential of single‐grain quartz (SGQ) dating of sand grains from these cores. For the fine silt grains we employed multiple‐aliquot and single‐aliquot methods to obtain last daylight exposure age estimates from near‐core‐top material. With the sand fraction we employed automated SGQ PSL methods to isolate the youngest grains. Five of six fine silt samples gave unreasonably large age estimates (&gt;20 ka), with the sixth sample yielding a multiple‐aliquot short‐bleach age estimate of 1.1 ± 0.6 ka. In contrast, five of seven sand samples yielded geologically reasonable last daylight exposure ages of 0.2–0.6 ka. These SGQ results are also remarkable when compared to published 14C ages of 1 ka to 9.7 ka from core top living calcite and acid‐insoluble organic matter. These SGQ results establish the likely utility of this single‐grain dating approach in such settings to provide chronologies for calving line histories of ice shelves. To take advantage of this utility, core collection should employ large‐diameter coring devices (e.g., Kasten and multicorers). A caveat is that large numbers (e.g., ∼10,000) of quartz grains may need analysis to provide acceptable statistics for useful age calculations.</description><subject>Age</subject><subject>Calcite</subject><subject>Climate change</subject><subject>Cores</subject><subject>Cryosphere</subject><subject>Dating</subject><subject>Dating techniques</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Geological time</subject><subject>Geophysics</subject><subject>glacimarine</subject><subject>Grains</subject><subject>Ice</subject><subject>ice shelf</subject><subject>Ice shelves</subject><subject>Instrumentation</subject><subject>Luminescence</subject><subject>Marine geology</subject><subject>Marine sediments</subject><subject>Organic matter</subject><subject>Quartz</subject><subject>Samples</subject><subject>Sand</subject><subject>Silt</subject><subject>Statistical methods</subject><issn>0148-0227</issn><issn>2169-9003</issn><issn>2156-2202</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LHDEUhoO04KLe9QeEQmkvOvbke9I7te7aRdoiilclZDKZNXY2uyYz-PHrm2VFSi_MRQKH53lzToLQOwKHBKj-QgH0fApAOBE7aEKJkBWlQN-gSanVFVCqdtFBzrdQFheSA5mg39_sEOICB-dxvvF9h3278HhpU4il4tuw9HHIX_ERjv4e2_U6ray7wWPeWJut99Ui2RDx3WjT8IT7cVnU7Hx0fh-97Wyf_cHzuYeupqeXJ2fV-c_Z95Oj88pyWqvKCscoccK3jVS04dxKSaHjuq5bIIQ2wDXjRIuGSumaDpRoG-i0AOaEqmu2hz5uc0t3d6PPg1mG0kHf2-hXYzZKlHmhVqyQn14liZK03ChBFvT9f-jtakyxzGFqSQgIxkiBPm8hl1Y5J9-ZdQrl9R4NAbP5F_PvvxT8w3Omzc72XbLRhfziUMY011IVjmy5-9D7x1czzXx2MZVq41RbJ-TBP7w4Nv0xJVEJc_1jZugcLo6vyS-j2V_Gxqcg</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Berger, G. W.</creator><creator>Murray, A. S.</creator><creator>Thomsen, K. J.</creator><creator>Domack, E. W.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>201009</creationdate><title>Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence</title><author>Berger, G. W. ; Murray, A. S. ; Thomsen, K. J. ; Domack, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Age</topic><topic>Calcite</topic><topic>Climate change</topic><topic>Cores</topic><topic>Cryosphere</topic><topic>Dating</topic><topic>Dating techniques</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Geological time</topic><topic>Geophysics</topic><topic>glacimarine</topic><topic>Grains</topic><topic>Ice</topic><topic>ice shelf</topic><topic>Ice shelves</topic><topic>Instrumentation</topic><topic>Luminescence</topic><topic>Marine geology</topic><topic>Marine sediments</topic><topic>Organic matter</topic><topic>Quartz</topic><topic>Samples</topic><topic>Sand</topic><topic>Silt</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, G. W.</creatorcontrib><creatorcontrib>Murray, A. S.</creatorcontrib><creatorcontrib>Thomsen, K. J.</creatorcontrib><creatorcontrib>Domack, E. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of Geophysical Research: Earth Surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, G. W.</au><au>Murray, A. S.</au><au>Thomsen, K. J.</au><au>Domack, E. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence</atitle><jtitle>Journal of Geophysical Research: Earth Surface</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-09</date><risdate>2010</risdate><volume>115</volume><issue>F3</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9003</issn><eissn>2156-2202</eissn><eissn>2169-9011</eissn><notes>istex:7E15F35603CD416853BADE752E6093ABB80A4B9B</notes><notes>ark:/67375/WNG-2J0RBW1P-9</notes><notes>ArticleID:2009JF001415</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>To develop an alternative dating tool for the Antarctic Peninsula (where the 14C method requires large, spatially variable reservoir corrections), we tested the clock‐zeroing assumption of photon‐stimulated luminescence (PSL) dating using a variety of PSL procedures. At ice shelf edges around the Antarctic Peninsula, sediment‐water‐interface (“zero‐age” analogs), silt‐rich short cores were collected in 2001–2003, originally only for fine silt dating tests. Later access to suitable instrumentation also permitted testing the potential of single‐grain quartz (SGQ) dating of sand grains from these cores. For the fine silt grains we employed multiple‐aliquot and single‐aliquot methods to obtain last daylight exposure age estimates from near‐core‐top material. With the sand fraction we employed automated SGQ PSL methods to isolate the youngest grains. Five of six fine silt samples gave unreasonably large age estimates (&gt;20 ka), with the sixth sample yielding a multiple‐aliquot short‐bleach age estimate of 1.1 ± 0.6 ka. In contrast, five of seven sand samples yielded geologically reasonable last daylight exposure ages of 0.2–0.6 ka. These SGQ results are also remarkable when compared to published 14C ages of 1 ka to 9.7 ka from core top living calcite and acid‐insoluble organic matter. These SGQ results establish the likely utility of this single‐grain dating approach in such settings to provide chronologies for calving line histories of ice shelves. To take advantage of this utility, core collection should employ large‐diameter coring devices (e.g., Kasten and multicorers). A caveat is that large numbers (e.g., ∼10,000) of quartz grains may need analysis to provide acceptable statistics for useful age calculations.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JF001415</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Earth Surface, 2010-09, Vol.115 (F3), p.n/a
issn 0148-0227
2169-9003
2156-2202
2169-9011
language eng
recordid cdi_proquest_miscellaneous_754560873
source Wiley; Wiley Online Library AGU Backfiles
subjects Age
Calcite
Climate change
Cores
Cryosphere
Dating
Dating techniques
Earth
Earth sciences
Earth, ocean, space
Estimates
Exact sciences and technology
Geological time
Geophysics
glacimarine
Grains
Ice
ice shelf
Ice shelves
Instrumentation
Luminescence
Marine geology
Marine sediments
Organic matter
Quartz
Samples
Sand
Silt
Statistical methods
title Dating ice shelf edge marine sediments: A new approach using single-grain quartz luminescence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-02T17%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dating%20ice%20shelf%20edge%20marine%20sediments:%20A%20new%20approach%20using%20single-grain%20quartz%20luminescence&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Earth%20Surface&rft.au=Berger,%20G.%20W.&rft.date=2010-09&rft.volume=115&rft.issue=F3&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JF001415&rft_dat=%3Cproquest_cross%3E1762112606%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4287-a5c321c5edb672b44a6620f4988d0112b04934195b266cbf075db0f9503c57883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=861105331&rft_id=info:pmid/&rfr_iscdi=true