Loading…
Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface
The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition...
Saved in:
Published in: | Langmuir 2008-05, Vol.24 (9), p.5003-5009 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663 |
---|---|
cites | cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663 |
container_end_page | 5009 |
container_issue | 9 |
container_start_page | 5003 |
container_title | Langmuir |
container_volume | 24 |
creator | Hong, Yongsuk Brown, Derick G |
description | The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface. |
doi_str_mv | 10.1021/la703564q |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754545075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69156939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</originalsourceid><addsrcrecordid>eNp90E1vEzEQBmALgWgaOPAH0F4Acdhir7-PbJQCVSVQWyRu1qwzbrZssq3tRfDva5QovVS9jA_z6PXoJeQNoyeMNuzTAJpyqcTdMzJjsqG1NI1-TmZUC15rofgROU7phlJqubAvyREzXHHBxIwslwP6HMeUIfe-anENf_oxVmOo8hqrxRriNdYXeD0NkHFVteAzxh6GaoHDUF1OMYDHV-RFgCHh6_07Jz9Pl1eLr_X59y_fFp_PaxDa5tpQ7xtjLcgGELwPlAmhvRZgWWeM6EJYdcoybkIXmDEGOAopLFtZKpRSfE4-7HJv43g3Ycpu0ydfDoEtjlNyWhYuqZZFvn9Sll-kstwW-HEHfSkhRQzuNvYbiP8co-5_u-7QbrFv96FTt8HVg9zXWcC7PYDkYQgRtr5PB9dQ3lBT5pzUO9enjH8Pe4i_ndJcS3f149K1Z_LXmWkvXPuQCz65m3GK29LyIwfeA7Aymzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69156939</pqid></control><display><type>article</type><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hong, Yongsuk ; Brown, Derick G</creator><creatorcontrib>Hong, Yongsuk ; Brown, Derick G</creatorcontrib><description>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la703564q</identifier><identifier>PMID: 18363414</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacillus - chemistry ; Bacillus brevis ; Biopolymers - chemistry ; Cell Wall - chemistry ; Chemistry ; Colloidal state and disperse state ; Electrolytes ; Escherichia coli ; Escherichia coli - chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrogen-Ion Concentration ; Static Electricity ; Surface physical chemistry ; Surface Properties</subject><ispartof>Langmuir, 2008-05, Vol.24 (9), p.5003-5009</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</citedby><cites>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20320820$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18363414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Yongsuk</creatorcontrib><creatorcontrib>Brown, Derick G</creatorcontrib><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</description><subject>Bacillus - chemistry</subject><subject>Bacillus brevis</subject><subject>Biopolymers - chemistry</subject><subject>Cell Wall - chemistry</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrolytes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Static Electricity</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90E1vEzEQBmALgWgaOPAH0F4Acdhir7-PbJQCVSVQWyRu1qwzbrZssq3tRfDva5QovVS9jA_z6PXoJeQNoyeMNuzTAJpyqcTdMzJjsqG1NI1-TmZUC15rofgROU7phlJqubAvyREzXHHBxIwslwP6HMeUIfe-anENf_oxVmOo8hqrxRriNdYXeD0NkHFVteAzxh6GaoHDUF1OMYDHV-RFgCHh6_07Jz9Pl1eLr_X59y_fFp_PaxDa5tpQ7xtjLcgGELwPlAmhvRZgWWeM6EJYdcoybkIXmDEGOAopLFtZKpRSfE4-7HJv43g3Ycpu0ydfDoEtjlNyWhYuqZZFvn9Sll-kstwW-HEHfSkhRQzuNvYbiP8co-5_u-7QbrFv96FTt8HVg9zXWcC7PYDkYQgRtr5PB9dQ3lBT5pzUO9enjH8Pe4i_ndJcS3f149K1Z_LXmWkvXPuQCz65m3GK29LyIwfeA7Aymzo</recordid><startdate>20080506</startdate><enddate>20080506</enddate><creator>Hong, Yongsuk</creator><creator>Brown, Derick G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20080506</creationdate><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><author>Hong, Yongsuk ; Brown, Derick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus - chemistry</topic><topic>Bacillus brevis</topic><topic>Biopolymers - chemistry</topic><topic>Cell Wall - chemistry</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrolytes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Static Electricity</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yongsuk</creatorcontrib><creatorcontrib>Brown, Derick G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yongsuk</au><au>Brown, Derick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-05-06</date><risdate>2008</risdate><volume>24</volume><issue>9</issue><spage>5003</spage><epage>5009</epage><pages>5003-5009</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18363414</pmid><doi>10.1021/la703564q</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2008-05, Vol.24 (9), p.5003-5009 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_754545075 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Bacillus - chemistry Bacillus brevis Biopolymers - chemistry Cell Wall - chemistry Chemistry Colloidal state and disperse state Electrolytes Escherichia coli Escherichia coli - chemistry Exact sciences and technology General and physical chemistry Hydrogen-Ion Concentration Static Electricity Surface physical chemistry Surface Properties |
title | Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T17%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Behavior%20of%20the%20Charge-Regulated%20Bacterial%20Cell%20Surface&rft.jtitle=Langmuir&rft.au=Hong,%20Yongsuk&rft.date=2008-05-06&rft.volume=24&rft.issue=9&rft.spage=5003&rft.epage=5009&rft.pages=5003-5009&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la703564q&rft_dat=%3Cproquest_cross%3E69156939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69156939&rft_id=info:pmid/18363414&rfr_iscdi=true |