Loading…

Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface

The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-05, Vol.24 (9), p.5003-5009
Main Authors: Hong, Yongsuk, Brown, Derick G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663
cites cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663
container_end_page 5009
container_issue 9
container_start_page 5003
container_title Langmuir
container_volume 24
creator Hong, Yongsuk
Brown, Derick G
description The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.
doi_str_mv 10.1021/la703564q
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_754545075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69156939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</originalsourceid><addsrcrecordid>eNp90E1vEzEQBmALgWgaOPAH0F4Acdhir7-PbJQCVSVQWyRu1qwzbrZssq3tRfDva5QovVS9jA_z6PXoJeQNoyeMNuzTAJpyqcTdMzJjsqG1NI1-TmZUC15rofgROU7phlJqubAvyREzXHHBxIwslwP6HMeUIfe-anENf_oxVmOo8hqrxRriNdYXeD0NkHFVteAzxh6GaoHDUF1OMYDHV-RFgCHh6_07Jz9Pl1eLr_X59y_fFp_PaxDa5tpQ7xtjLcgGELwPlAmhvRZgWWeM6EJYdcoybkIXmDEGOAopLFtZKpRSfE4-7HJv43g3Ycpu0ydfDoEtjlNyWhYuqZZFvn9Sll-kstwW-HEHfSkhRQzuNvYbiP8co-5_u-7QbrFv96FTt8HVg9zXWcC7PYDkYQgRtr5PB9dQ3lBT5pzUO9enjH8Pe4i_ndJcS3f149K1Z_LXmWkvXPuQCz65m3GK29LyIwfeA7Aymzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69156939</pqid></control><display><type>article</type><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hong, Yongsuk ; Brown, Derick G</creator><creatorcontrib>Hong, Yongsuk ; Brown, Derick G</creatorcontrib><description>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la703564q</identifier><identifier>PMID: 18363414</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacillus - chemistry ; Bacillus brevis ; Biopolymers - chemistry ; Cell Wall - chemistry ; Chemistry ; Colloidal state and disperse state ; Electrolytes ; Escherichia coli ; Escherichia coli - chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrogen-Ion Concentration ; Static Electricity ; Surface physical chemistry ; Surface Properties</subject><ispartof>Langmuir, 2008-05, Vol.24 (9), p.5003-5009</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</citedby><cites>FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20320820$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18363414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Yongsuk</creatorcontrib><creatorcontrib>Brown, Derick G</creatorcontrib><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</description><subject>Bacillus - chemistry</subject><subject>Bacillus brevis</subject><subject>Biopolymers - chemistry</subject><subject>Cell Wall - chemistry</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrolytes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Static Electricity</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp90E1vEzEQBmALgWgaOPAH0F4Acdhir7-PbJQCVSVQWyRu1qwzbrZssq3tRfDva5QovVS9jA_z6PXoJeQNoyeMNuzTAJpyqcTdMzJjsqG1NI1-TmZUC15rofgROU7phlJqubAvyREzXHHBxIwslwP6HMeUIfe-anENf_oxVmOo8hqrxRriNdYXeD0NkHFVteAzxh6GaoHDUF1OMYDHV-RFgCHh6_07Jz9Pl1eLr_X59y_fFp_PaxDa5tpQ7xtjLcgGELwPlAmhvRZgWWeM6EJYdcoybkIXmDEGOAopLFtZKpRSfE4-7HJv43g3Ycpu0ydfDoEtjlNyWhYuqZZFvn9Sll-kstwW-HEHfSkhRQzuNvYbiP8co-5_u-7QbrFv96FTt8HVg9zXWcC7PYDkYQgRtr5PB9dQ3lBT5pzUO9enjH8Pe4i_ndJcS3f149K1Z_LXmWkvXPuQCz65m3GK29LyIwfeA7Aymzo</recordid><startdate>20080506</startdate><enddate>20080506</enddate><creator>Hong, Yongsuk</creator><creator>Brown, Derick G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QP</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20080506</creationdate><title>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</title><author>Hong, Yongsuk ; Brown, Derick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus - chemistry</topic><topic>Bacillus brevis</topic><topic>Biopolymers - chemistry</topic><topic>Cell Wall - chemistry</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrolytes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Static Electricity</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yongsuk</creatorcontrib><creatorcontrib>Brown, Derick G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yongsuk</au><au>Brown, Derick G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-05-06</date><risdate>2008</risdate><volume>24</volume><issue>9</issue><spage>5003</spage><epage>5009</epage><pages>5003-5009</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid−base functional groups and Ca2+ sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl2), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca2+ surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18363414</pmid><doi>10.1021/la703564q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-05, Vol.24 (9), p.5003-5009
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_754545075
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Bacillus - chemistry
Bacillus brevis
Biopolymers - chemistry
Cell Wall - chemistry
Chemistry
Colloidal state and disperse state
Electrolytes
Escherichia coli
Escherichia coli - chemistry
Exact sciences and technology
General and physical chemistry
Hydrogen-Ion Concentration
Static Electricity
Surface physical chemistry
Surface Properties
title Electrostatic Behavior of the Charge-Regulated Bacterial Cell Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T17%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Behavior%20of%20the%20Charge-Regulated%20Bacterial%20Cell%20Surface&rft.jtitle=Langmuir&rft.au=Hong,%20Yongsuk&rft.date=2008-05-06&rft.volume=24&rft.issue=9&rft.spage=5003&rft.epage=5009&rft.pages=5003-5009&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la703564q&rft_dat=%3Cproquest_cross%3E69156939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-80cc2899a52aeaccf01447c74a91b884bffdb69138fbf1888a3e45491d9046663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69156939&rft_id=info:pmid/18363414&rfr_iscdi=true