Loading…

Converged solutions of the Newtonian extrudate-swell problem

Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of eac...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids 1999-02, Vol.29 (3), p.363-371
Main Authors: Georgiou, Georgios C., Boudouvis, Andreas G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4162-20ee6e1e8ad6429f504dbe9212ba753f823c077975433b53e879ea1ba5718ca73
container_end_page 371
container_issue 3
container_start_page 363
container_title International journal for numerical methods in fluids
container_volume 29
creator Georgiou, Georgios C.
Boudouvis, Andreas G.
description Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744705224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>744705224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4162-20ee6e1e8ad6429f504dbe9212ba753f823c077975433b53e879ea1ba5718ca73</originalsourceid><addsrcrecordid>eNqFkFFP2zAUha2JSSts_yEPkwYPKdd2EscdQqAUWKWKPoxpqC9XTnoDYWnC7HSFfz9H6eBhk_Zk6ej4O1cfY2ccxhxAHB9-nWWzIw5ahSATeci11iB4fCT0RJ74ZDI5n03Dy_lUaXEqxzDOFp9FOH3DRi-f9tgIhOKhAM3fsX3nHgBAi1SO2EnWNr_I3tEqcG296aq2cUFbBt09Bde07dqmMk1AT53drExHodtSXQePts1rWr9nb0tTO_qwew_Yt8uLm-xLOF9czbLzeVhEPBF-lighTqlZJZHQZQzRKictuMiNimWZClmAUlrFkZR5LClVmgzPTax4WhglD9inget3f27IdbiuXOEPMQ21G4cqihTEQkS-eTs0C9s6Z6nER1utjX1GDtj7ROx9Yq8GezX4xycKjRL7BL1PHHz6BDBboMCpR3_cHWFcYerSmqao3Cs_SaQC7mvLobatanr-a_6_6_8c3yUeHg7wynX09AI39gcmSqoYv19f4VLLbHkjl3grfwPotqRO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744705224</pqid></control><display><type>article</type><title>Converged solutions of the Newtonian extrudate-swell problem</title><source>Wiley</source><creator>Georgiou, Georgios C. ; Boudouvis, Andreas G.</creator><creatorcontrib>Georgiou, Georgios C. ; Boudouvis, Andreas G.</creatorcontrib><description>Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/(SICI)1097-0363(19990215)29:3&lt;363::AID-FLD792&gt;3.0.CO;2-D</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied fluid mechanics ; Capillary flow ; Computational methods in fluid dynamics ; convergence ; Convergence of numerical methods ; Exact sciences and technology ; extrudate-swell ; Finite element method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics, hydraulics, hydrostatics ; Physics ; Problem solving ; Reynolds number ; singular finite elements ; Stress concentration ; Surface tension ; Swelling</subject><ispartof>International journal for numerical methods in fluids, 1999-02, Vol.29 (3), p.363-371</ispartof><rights>Copyright © John Wiley &amp; Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4162-20ee6e1e8ad6429f504dbe9212ba753f823c077975433b53e879ea1ba5718ca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0363%2819990215%2929%3A3%3C363%3A%3AAID-FLD792%3E3.0.CO%3B2-D$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0363%2819990215%2929%3A3%3C363%3A%3AAID-FLD792%3E3.0.CO%3B2-D$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1663701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgiou, Georgios C.</creatorcontrib><creatorcontrib>Boudouvis, Andreas G.</creatorcontrib><title>Converged solutions of the Newtonian extrudate-swell problem</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><subject>Applied fluid mechanics</subject><subject>Capillary flow</subject><subject>Computational methods in fluid dynamics</subject><subject>convergence</subject><subject>Convergence of numerical methods</subject><subject>Exact sciences and technology</subject><subject>extrudate-swell</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Physics</subject><subject>Problem solving</subject><subject>Reynolds number</subject><subject>singular finite elements</subject><subject>Stress concentration</subject><subject>Surface tension</subject><subject>Swelling</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkFFP2zAUha2JSSts_yEPkwYPKdd2EscdQqAUWKWKPoxpqC9XTnoDYWnC7HSFfz9H6eBhk_Zk6ej4O1cfY2ccxhxAHB9-nWWzIw5ahSATeci11iB4fCT0RJ74ZDI5n03Dy_lUaXEqxzDOFp9FOH3DRi-f9tgIhOKhAM3fsX3nHgBAi1SO2EnWNr_I3tEqcG296aq2cUFbBt09Bde07dqmMk1AT53drExHodtSXQePts1rWr9nb0tTO_qwew_Yt8uLm-xLOF9czbLzeVhEPBF-lighTqlZJZHQZQzRKictuMiNimWZClmAUlrFkZR5LClVmgzPTax4WhglD9inget3f27IdbiuXOEPMQ21G4cqihTEQkS-eTs0C9s6Z6nER1utjX1GDtj7ROx9Yq8GezX4xycKjRL7BL1PHHz6BDBboMCpR3_cHWFcYerSmqao3Cs_SaQC7mvLobatanr-a_6_6_8c3yUeHg7wynX09AI39gcmSqoYv19f4VLLbHkjl3grfwPotqRO</recordid><startdate>19990215</startdate><enddate>19990215</enddate><creator>Georgiou, Georgios C.</creator><creator>Boudouvis, Andreas G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19990215</creationdate><title>Converged solutions of the Newtonian extrudate-swell problem</title><author>Georgiou, Georgios C. ; Boudouvis, Andreas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4162-20ee6e1e8ad6429f504dbe9212ba753f823c077975433b53e879ea1ba5718ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied fluid mechanics</topic><topic>Capillary flow</topic><topic>Computational methods in fluid dynamics</topic><topic>convergence</topic><topic>Convergence of numerical methods</topic><topic>Exact sciences and technology</topic><topic>extrudate-swell</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Physics</topic><topic>Problem solving</topic><topic>Reynolds number</topic><topic>singular finite elements</topic><topic>Stress concentration</topic><topic>Surface tension</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, Georgios C.</creatorcontrib><creatorcontrib>Boudouvis, Andreas G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, Georgios C.</au><au>Boudouvis, Andreas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converged solutions of the Newtonian extrudate-swell problem</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>1999-02-15</date><risdate>1999</risdate><volume>29</volume><issue>3</issue><spage>363</spage><epage>371</epage><pages>363-371</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><notes>ark:/67375/WNG-Z93CZT3Z-X</notes><notes>ArticleID:FLD792</notes><notes>istex:B5B7A80EB5BD14EA5E5E542974FACA236F53574C</notes><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/(SICI)1097-0363(19990215)29:3&lt;363::AID-FLD792&gt;3.0.CO;2-D</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 1999-02, Vol.29 (3), p.363-371
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_744705224
source Wiley
subjects Applied fluid mechanics
Capillary flow
Computational methods in fluid dynamics
convergence
Convergence of numerical methods
Exact sciences and technology
extrudate-swell
Finite element method
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamics, hydraulics, hydrostatics
Physics
Problem solving
Reynolds number
singular finite elements
Stress concentration
Surface tension
Swelling
title Converged solutions of the Newtonian extrudate-swell problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converged%20solutions%20of%20the%20Newtonian%20extrudate-swell%20problem&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Georgiou,%20Georgios%20C.&rft.date=1999-02-15&rft.volume=29&rft.issue=3&rft.spage=363&rft.epage=371&rft.pages=363-371&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/(SICI)1097-0363(19990215)29:3%3C363::AID-FLD792%3E3.0.CO;2-D&rft_dat=%3Cproquest_cross%3E744705224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4162-20ee6e1e8ad6429f504dbe9212ba753f823c077975433b53e879ea1ba5718ca73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744705224&rft_id=info:pmid/&rfr_iscdi=true