Loading…

Anomalous Transport and Possible Phase Transition in Palladium Nanojunctions

Many phenomena in condensed matter are thought to result from competition between different ordered phases. Palladium is a paramagnetic metal close to both ferromagnetism and superconductivity and is, therefore, a potentially interesting material to consider. Nanoscale structuring of matter can modi...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2010-05, Vol.4 (5), p.2831-2837
Main Authors: Scott, Gavin D, Palacios, Juan J, Natelson, Douglas
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many phenomena in condensed matter are thought to result from competition between different ordered phases. Palladium is a paramagnetic metal close to both ferromagnetism and superconductivity and is, therefore, a potentially interesting material to consider. Nanoscale structuring of matter can modify relevant physical energy scales, leading to effects such as locally modified magnetic interactions. We present transport measurements in electromigrated palladium break junction devices showing the emergence at low temperatures of anomalous sharp features in the differential conductance. These features appear symmetrically in applied bias and exhibit a temperature dependence of their characteristic voltages reminiscent of a mean-field phase transition. The systematic variation of these voltages with zero bias conductance, together with density functional theory calculations illustrating the relationship between the magnetization of Pd and atomic coordination, suggests that the features may result from the onset of spontaneous magnetization in the nanojunction electrodes. We propose that the characteristic conductance features are related to inelastic tunneling involving magnetic excitations.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn1000172