Loading…

Intelligent multifunction myoelectric control of hand prostheses

Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical engineering & technology 2002-07, Vol.26 (4), p.139-146
Main Authors: Light, C. M., Chappell, P. H., Hudgins, B., Engelhart, K.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-46feeb9965cdadc31ed13a0c2828fd2cc0969b0a0d1b219806b068ba3ca8dfb43
cites
container_end_page 146
container_issue 4
container_start_page 139
container_title Journal of medical engineering & technology
container_volume 26
creator Light, C. M.
Chappell, P. H.
Hudgins, B.
Engelhart, K.
description Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension of a range of objects. Multi-axis hands may address this lack of functionality, but as with multifunction devices in general, serve to increase the cognitive burden on the user. Intelligent hierarchical control of multiple degree-of-freedom hand prostheses has been used to reduce the need for visual feedback by automating the grasping process. This paper presents a hybrid controller that has been developed to enable different prehensile functions to be initiated directly from the user's myoelectric signal. A digital signal processor (DSP) regulates the grip pressure of a new six-degree-of-freedom hand prosthesis thereby ensuring secure prehension without continuous visual feedback.
doi_str_mv 10.1080/03091900210142459
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72617720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72617720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-46feeb9965cdadc31ed13a0c2828fd2cc0969b0a0d1b219806b068ba3ca8dfb43</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOj5-gBvpRnfVm6TtNOhCGXyB4EbBXUnzcDqkyZikyPx7ozMyiDCru7jfOffcg9AxhnMMNVwABYYZAMGAC1KUbAuNcFEVeUnI2zYafe_zBJA9tB_CDBJZENhFe5hQVlFSj9D1o43KmO5d2Zj1g4mdHqyInbNZv3DKKBF9JzLhbPTOZE5nU25lNvcuxKkKKhyiHc1NUEereYBe725fJg_50_P94-TmKRe0GMe8qLRSLWNVKSSXgmIlMeUgSE1qLYkQwCrWAgeJW4JZDVULVd1yKngtdVvQA3S29E2nPwYVYtN3QaTo3Co3hGZMKjweE0ggXoIiZQxe6Wbuu577RYOh-a6t-Vdb0pyszIe2V3KtWPWUgNMVwIPgRntuRRfWHGVlWf5wV0uus9r5nn86b2QT-cI4_yuim3Jc_pFPFTdxKrhXzcwN3qaCN3zxBUkEmv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72617720</pqid></control><display><type>article</type><title>Intelligent multifunction myoelectric control of hand prostheses</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Medical Collection (Reading list)</source><creator>Light, C. M. ; Chappell, P. H. ; Hudgins, B. ; Engelhart, K.</creator><creatorcontrib>Light, C. M. ; Chappell, P. H. ; Hudgins, B. ; Engelhart, K.</creatorcontrib><description>Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension of a range of objects. Multi-axis hands may address this lack of functionality, but as with multifunction devices in general, serve to increase the cognitive burden on the user. Intelligent hierarchical control of multiple degree-of-freedom hand prostheses has been used to reduce the need for visual feedback by automating the grasping process. This paper presents a hybrid controller that has been developed to enable different prehensile functions to be initiated directly from the user's myoelectric signal. A digital signal processor (DSP) regulates the grip pressure of a new six-degree-of-freedom hand prosthesis thereby ensuring secure prehension without continuous visual feedback.</description><identifier>ISSN: 0309-1902</identifier><identifier>EISSN: 1464-522X</identifier><identifier>DOI: 10.1080/03091900210142459</identifier><identifier>PMID: 12396328</identifier><identifier>CODEN: JMTEDN</identifier><language>eng</language><publisher>London: Informa UK Ltd</publisher><subject>Algorithms ; Artificial Limbs ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Electromyography ; Electronics, Medical - instrumentation ; Feedback ; Hand - physiopathology ; Hand Strength ; Humans ; Medical sciences ; Muscle, Skeletal - physiopathology ; Neural Networks (Computer) ; Prosthesis Design</subject><ispartof>Journal of medical engineering &amp; technology, 2002-07, Vol.26 (4), p.139-146</ispartof><rights>2002 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-46feeb9965cdadc31ed13a0c2828fd2cc0969b0a0d1b219806b068ba3ca8dfb43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13955528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12396328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Light, C. M.</creatorcontrib><creatorcontrib>Chappell, P. H.</creatorcontrib><creatorcontrib>Hudgins, B.</creatorcontrib><creatorcontrib>Engelhart, K.</creatorcontrib><title>Intelligent multifunction myoelectric control of hand prostheses</title><title>Journal of medical engineering &amp; technology</title><addtitle>J Med Eng Technol</addtitle><description>Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension of a range of objects. Multi-axis hands may address this lack of functionality, but as with multifunction devices in general, serve to increase the cognitive burden on the user. Intelligent hierarchical control of multiple degree-of-freedom hand prostheses has been used to reduce the need for visual feedback by automating the grasping process. This paper presents a hybrid controller that has been developed to enable different prehensile functions to be initiated directly from the user's myoelectric signal. A digital signal processor (DSP) regulates the grip pressure of a new six-degree-of-freedom hand prosthesis thereby ensuring secure prehension without continuous visual feedback.</description><subject>Algorithms</subject><subject>Artificial Limbs</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Electromyography</subject><subject>Electronics, Medical - instrumentation</subject><subject>Feedback</subject><subject>Hand - physiopathology</subject><subject>Hand Strength</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Muscle, Skeletal - physiopathology</subject><subject>Neural Networks (Computer)</subject><subject>Prosthesis Design</subject><issn>0309-1902</issn><issn>1464-522X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOj5-gBvpRnfVm6TtNOhCGXyB4EbBXUnzcDqkyZikyPx7ozMyiDCru7jfOffcg9AxhnMMNVwABYYZAMGAC1KUbAuNcFEVeUnI2zYafe_zBJA9tB_CDBJZENhFe5hQVlFSj9D1o43KmO5d2Zj1g4mdHqyInbNZv3DKKBF9JzLhbPTOZE5nU25lNvcuxKkKKhyiHc1NUEereYBe725fJg_50_P94-TmKRe0GMe8qLRSLWNVKSSXgmIlMeUgSE1qLYkQwCrWAgeJW4JZDVULVd1yKngtdVvQA3S29E2nPwYVYtN3QaTo3Co3hGZMKjweE0ggXoIiZQxe6Wbuu577RYOh-a6t-Vdb0pyszIe2V3KtWPWUgNMVwIPgRntuRRfWHGVlWf5wV0uus9r5nn86b2QT-cI4_yuim3Jc_pFPFTdxKrhXzcwN3qaCN3zxBUkEmv0</recordid><startdate>200207</startdate><enddate>200207</enddate><creator>Light, C. M.</creator><creator>Chappell, P. H.</creator><creator>Hudgins, B.</creator><creator>Engelhart, K.</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200207</creationdate><title>Intelligent multifunction myoelectric control of hand prostheses</title><author>Light, C. M. ; Chappell, P. H. ; Hudgins, B. ; Engelhart, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-46feeb9965cdadc31ed13a0c2828fd2cc0969b0a0d1b219806b068ba3ca8dfb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Artificial Limbs</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Electromyography</topic><topic>Electronics, Medical - instrumentation</topic><topic>Feedback</topic><topic>Hand - physiopathology</topic><topic>Hand Strength</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Muscle, Skeletal - physiopathology</topic><topic>Neural Networks (Computer)</topic><topic>Prosthesis Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Light, C. M.</creatorcontrib><creatorcontrib>Chappell, P. H.</creatorcontrib><creatorcontrib>Hudgins, B.</creatorcontrib><creatorcontrib>Engelhart, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Light, C. M.</au><au>Chappell, P. H.</au><au>Hudgins, B.</au><au>Engelhart, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent multifunction myoelectric control of hand prostheses</atitle><jtitle>Journal of medical engineering &amp; technology</jtitle><addtitle>J Med Eng Technol</addtitle><date>2002-07</date><risdate>2002</risdate><volume>26</volume><issue>4</issue><spage>139</spage><epage>146</epage><pages>139-146</pages><issn>0309-1902</issn><eissn>1464-522X</eissn><coden>JMTEDN</coden><abstract>Intuitive myoelectric prosthesis control is difficult to achieve due to the absence of proprioceptive feedback, which forces the user to monitor grip pressure by visual information. Existing myoelectric hand prostheses form a single degree of freedom pincer motion that inhibits the stable prehension of a range of objects. Multi-axis hands may address this lack of functionality, but as with multifunction devices in general, serve to increase the cognitive burden on the user. Intelligent hierarchical control of multiple degree-of-freedom hand prostheses has been used to reduce the need for visual feedback by automating the grasping process. This paper presents a hybrid controller that has been developed to enable different prehensile functions to be initiated directly from the user's myoelectric signal. A digital signal processor (DSP) regulates the grip pressure of a new six-degree-of-freedom hand prosthesis thereby ensuring secure prehension without continuous visual feedback.</abstract><cop>London</cop><pub>Informa UK Ltd</pub><pmid>12396328</pmid><doi>10.1080/03091900210142459</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1902
ispartof Journal of medical engineering & technology, 2002-07, Vol.26 (4), p.139-146
issn 0309-1902
1464-522X
language eng
recordid cdi_proquest_miscellaneous_72617720
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Medical Collection (Reading list)
subjects Algorithms
Artificial Limbs
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Electromyography
Electronics, Medical - instrumentation
Feedback
Hand - physiopathology
Hand Strength
Humans
Medical sciences
Muscle, Skeletal - physiopathology
Neural Networks (Computer)
Prosthesis Design
title Intelligent multifunction myoelectric control of hand prostheses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-18T16%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20multifunction%20myoelectric%20control%20of%20hand%20prostheses&rft.jtitle=Journal%20of%20medical%20engineering%20&%20technology&rft.au=Light,%20C.%20M.&rft.date=2002-07&rft.volume=26&rft.issue=4&rft.spage=139&rft.epage=146&rft.pages=139-146&rft.issn=0309-1902&rft.eissn=1464-522X&rft.coden=JMTEDN&rft_id=info:doi/10.1080/03091900210142459&rft_dat=%3Cproquest_pubme%3E72617720%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-46feeb9965cdadc31ed13a0c2828fd2cc0969b0a0d1b219806b068ba3ca8dfb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72617720&rft_id=info:pmid/12396328&rfr_iscdi=true