Loading…

Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana

Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2001-04, Vol.24 (4), p.419-428
Main Authors: Ramonell, K. M., Kuang, A., Porterfield, D. M., Crispi, M. L., Xiao, Y., McClure, G., Musgrave, M. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953
cites cdi_FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953
container_end_page 428
container_issue 4
container_start_page 419
container_title Plant, cell and environment
container_volume 24
creator Ramonell, K. M.
Kuang, A.
Porterfield, D. M.
Crispi, M. L.
Xiao, Y.
McClure, G.
Musgrave, M. E.
description Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.
doi_str_mv 10.1046/j.1365-3040.2001.00691.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72219520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72013782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953</originalsourceid><addsrcrecordid>eNqN0c-L1DAUB_Agijuu_gciQcFba341acHLMqy6sKCHvYc0eXUydJKatOzMf2_qDCt48pSEfL4v4T2EMCU1JUJ-2teUy6biRJCaEUJrQmRH6-MztHm6eI42hApSKdXRK_Qq5z0pUqjuJbqiVCophNggfReGcYFgAccBm_kQ87SD5C2Ox9NPCDgGPIIZcJ7TYuclATbBlZNJdocdTDH72RfkA75JpvcuTtlnPO_M6E0wr9GLwYwZ3lzWa_Tw5fZh-626__71bntzX9mmkbQCrrhpneydo8AsdUKqoeUCWqGcFN3AHOlZQ1xDO6JU4wYFCoxru15C1_Br9PFcdkrx1wJ51gefLYyjCRCXrBVjtGsYKfD9P3AflxTK1zTjklDeMFZQe0Y2xZwTDHpK_mDSSVOi1wHovV77rNc-63UA-s8A9LFE313qL_0B3N_gpeMFfLgAk60Zh2SC9fnJdaWk4kV9PqtHP8Lpv5_XP7a3ZVPib8_xYLLRYU55ZYKQtpVty38D3WGo8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236013522</pqid></control><display><type>article</type><title>Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana</title><source>Wiley</source><creator>Ramonell, K. M. ; Kuang, A. ; Porterfield, D. M. ; Crispi, M. L. ; Xiao, Y. ; McClure, G. ; Musgrave, M. E.</creator><creatorcontrib>Ramonell, K. M. ; Kuang, A. ; Porterfield, D. M. ; Crispi, M. L. ; Xiao, Y. ; McClure, G. ; Musgrave, M. E.</creatorcontrib><description>Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1046/j.1365-3040.2001.00691.x</identifier><identifier>PMID: 11676444</identifier><identifier>CODEN: PLCEDV</identifier><language>eng</language><publisher>Legacy CDMS: Blackwell Science Ltd</publisher><subject>Agronomy. Soil science and plant productions ; Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis - ultrastructure ; Biological and medical sciences ; Biological Transport - drug effects ; Brassinosteroids ; Carbon Dioxide - pharmacology ; Cell Respiration ; cell size ; Cholestanols - metabolism ; Dose-Response Relationship, Drug ; Economic plant physiology ; Fundamental and applied biological sciences. Psychology ; Growth and development ; leaf ultrastructure ; Life Sciences (General) ; Microscopy, Electron ; Mitochondria - drug effects ; Morphogenesis, differentiation, rhizogenesis, tuberization. Senescence ; Oxygen - pharmacology ; Partial Pressure ; Photosynthesis ; Physical agents ; Plant Leaves - drug effects ; Plant Leaves - growth &amp; development ; Plant Leaves - metabolism ; Plant Leaves - ultrastructure ; Plant physiology and development ; Plastids - drug effects ; Space life sciences ; Starch - biosynthesis ; Starch - metabolism ; Steroids, Heterocyclic - metabolism ; Vegetative apparatus, growth and morphogenesis. Senescence</subject><ispartof>Plant, cell and environment, 2001-04, Vol.24 (4), p.419-428</ispartof><rights>Blackwell Science Ltd</rights><rights>2001 INIST-CNRS</rights><rights>Copyright Blackwell Science Ltd. Apr 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953</citedby><cites>FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-3040.2001.00691.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-3040.2001.00691.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=930473$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11676444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramonell, K. M.</creatorcontrib><creatorcontrib>Kuang, A.</creatorcontrib><creatorcontrib>Porterfield, D. M.</creatorcontrib><creatorcontrib>Crispi, M. L.</creatorcontrib><creatorcontrib>Xiao, Y.</creatorcontrib><creatorcontrib>McClure, G.</creatorcontrib><creatorcontrib>Musgrave, M. E.</creatorcontrib><title>Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Biological Transport - drug effects</subject><subject>Brassinosteroids</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Cell Respiration</subject><subject>cell size</subject><subject>Cholestanols - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Economic plant physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Growth and development</subject><subject>leaf ultrastructure</subject><subject>Life Sciences (General)</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - drug effects</subject><subject>Morphogenesis, differentiation, rhizogenesis, tuberization. Senescence</subject><subject>Oxygen - pharmacology</subject><subject>Partial Pressure</subject><subject>Photosynthesis</subject><subject>Physical agents</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - ultrastructure</subject><subject>Plant physiology and development</subject><subject>Plastids - drug effects</subject><subject>Space life sciences</subject><subject>Starch - biosynthesis</subject><subject>Starch - metabolism</subject><subject>Steroids, Heterocyclic - metabolism</subject><subject>Vegetative apparatus, growth and morphogenesis. Senescence</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqN0c-L1DAUB_Agijuu_gciQcFba341acHLMqy6sKCHvYc0eXUydJKatOzMf2_qDCt48pSEfL4v4T2EMCU1JUJ-2teUy6biRJCaEUJrQmRH6-MztHm6eI42hApSKdXRK_Qq5z0pUqjuJbqiVCophNggfReGcYFgAccBm_kQ87SD5C2Ox9NPCDgGPIIZcJ7TYuclATbBlZNJdocdTDH72RfkA75JpvcuTtlnPO_M6E0wr9GLwYwZ3lzWa_Tw5fZh-626__71bntzX9mmkbQCrrhpneydo8AsdUKqoeUCWqGcFN3AHOlZQ1xDO6JU4wYFCoxru15C1_Br9PFcdkrx1wJ51gefLYyjCRCXrBVjtGsYKfD9P3AflxTK1zTjklDeMFZQe0Y2xZwTDHpK_mDSSVOi1wHovV77rNc-63UA-s8A9LFE313qL_0B3N_gpeMFfLgAk60Zh2SC9fnJdaWk4kV9PqtHP8Lpv5_XP7a3ZVPib8_xYLLRYU55ZYKQtpVty38D3WGo8g</recordid><startdate>200104</startdate><enddate>200104</enddate><creator>Ramonell, K. M.</creator><creator>Kuang, A.</creator><creator>Porterfield, D. M.</creator><creator>Crispi, M. L.</creator><creator>Xiao, Y.</creator><creator>McClure, G.</creator><creator>Musgrave, M. E.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>200104</creationdate><title>Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana</title><author>Ramonell, K. M. ; Kuang, A. ; Porterfield, D. M. ; Crispi, M. L. ; Xiao, Y. ; McClure, G. ; Musgrave, M. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Biological Transport - drug effects</topic><topic>Brassinosteroids</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Cell Respiration</topic><topic>cell size</topic><topic>Cholestanols - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Economic plant physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Growth and development</topic><topic>leaf ultrastructure</topic><topic>Life Sciences (General)</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - drug effects</topic><topic>Morphogenesis, differentiation, rhizogenesis, tuberization. Senescence</topic><topic>Oxygen - pharmacology</topic><topic>Partial Pressure</topic><topic>Photosynthesis</topic><topic>Physical agents</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - ultrastructure</topic><topic>Plant physiology and development</topic><topic>Plastids - drug effects</topic><topic>Space life sciences</topic><topic>Starch - biosynthesis</topic><topic>Starch - metabolism</topic><topic>Steroids, Heterocyclic - metabolism</topic><topic>Vegetative apparatus, growth and morphogenesis. Senescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramonell, K. M.</creatorcontrib><creatorcontrib>Kuang, A.</creatorcontrib><creatorcontrib>Porterfield, D. M.</creatorcontrib><creatorcontrib>Crispi, M. L.</creatorcontrib><creatorcontrib>Xiao, Y.</creatorcontrib><creatorcontrib>McClure, G.</creatorcontrib><creatorcontrib>Musgrave, M. E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramonell, K. M.</au><au>Kuang, A.</au><au>Porterfield, D. M.</au><au>Crispi, M. L.</au><au>Xiao, Y.</au><au>McClure, G.</au><au>Musgrave, M. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2001-04</date><risdate>2001</risdate><volume>24</volume><issue>4</issue><spage>419</spage><epage>428</epage><pages>419-428</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><coden>PLCEDV</coden><notes>CDMS</notes><notes>Legacy CDMS</notes><notes>Present address: Department of Biology, University of Texas – Pan American, Edinburg, TX 78539, USA.</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2, and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2.5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development. Grant numbers: NAG5-3756, NAG2-1020, NAG2-1375.</abstract><cop>Legacy CDMS</cop><pub>Blackwell Science Ltd</pub><pmid>11676444</pmid><doi>10.1046/j.1365-3040.2001.00691.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2001-04, Vol.24 (4), p.419-428
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_miscellaneous_72219520
source Wiley
subjects Agronomy. Soil science and plant productions
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis - ultrastructure
Biological and medical sciences
Biological Transport - drug effects
Brassinosteroids
Carbon Dioxide - pharmacology
Cell Respiration
cell size
Cholestanols - metabolism
Dose-Response Relationship, Drug
Economic plant physiology
Fundamental and applied biological sciences. Psychology
Growth and development
leaf ultrastructure
Life Sciences (General)
Microscopy, Electron
Mitochondria - drug effects
Morphogenesis, differentiation, rhizogenesis, tuberization. Senescence
Oxygen - pharmacology
Partial Pressure
Photosynthesis
Physical agents
Plant Leaves - drug effects
Plant Leaves - growth & development
Plant Leaves - metabolism
Plant Leaves - ultrastructure
Plant physiology and development
Plastids - drug effects
Space life sciences
Starch - biosynthesis
Starch - metabolism
Steroids, Heterocyclic - metabolism
Vegetative apparatus, growth and morphogenesis. Senescence
title Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T12%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20atmospheric%20oxygen%20on%20leaf%20structure%20and%20starch%20deposition%20in%20Arabidopsis%20thaliana&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Ramonell,%20K.%20M.&rft.date=2001-04&rft.volume=24&rft.issue=4&rft.spage=419&rft.epage=428&rft.pages=419-428&rft.issn=0140-7791&rft.eissn=1365-3040&rft.coden=PLCEDV&rft_id=info:doi/10.1046/j.1365-3040.2001.00691.x&rft_dat=%3Cproquest_cross%3E72013782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5561-e373a8d6bdd1e2c1d467f834e847d649f2d0b250d5190775df7e7ead89b6e953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=236013522&rft_id=info:pmid/11676444&rfr_iscdi=true