Loading…

Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides

The peptide hydrates Gly-Gly-Val·2H2O (GGV) and Gly-Ala-Leu·3H2O (GAL) are known to adopt α-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR (2H and 17O) study of these peptides...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2002-03, Vol.124 (10), p.2345-2351
Main Authors: Pometun, Maxim S, Gundusharma, Usha M, Richardson, John F, Wittebort, Richard J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253
cites cdi_FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253
container_end_page 2351
container_issue 10
container_start_page 2345
container_title Journal of the American Chemical Society
container_volume 124
creator Pometun, Maxim S
Gundusharma, Usha M
Richardson, John F
Wittebort, Richard J
description The peptide hydrates Gly-Gly-Val·2H2O (GGV) and Gly-Ala-Leu·3H2O (GAL) are known to adopt α-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR (2H and 17O) study of these peptides. From TGA and DSC, the average enthalpy per H-bond is 15 kJ/mol. The dynamics and average orientation of the hydrate are studied by powder and single-crystal 2H NMR. Whereas waters that are shown by the X-ray structure to be coordinated by four hydrogen bonds do not yield observable 2H NMR signals at room temperature, two of the three triply coordinated waters yield residual 2H quadrupole coupling tensors characteristic of rapid 180° flip motions and the orientation of the residual tensor is that expected from the X-ray structure-derived H-bonding pattern. At −65 °C, the flip motions of triply coordinated water in GGV slow into the 2H NMR intermediate exchange regime whereas the tetrahedrally coordinated water approaches the slow-exchange limit and yields an observable NMR signal. Extensive isotope exchange between water vapor and crystalline GGV establishes the presence of additional hydrate dynamics and solid-state proton transfer along a chain of water-bridged protonated α-amino groups.
doi_str_mv 10.1021/ja017364r
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71534626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71534626</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253</originalsourceid><addsrcrecordid>eNpt0EFr2zAUB3AxWpas26FfoPjSwQ5unyTLso4lrM0g3UKdbbCLUKQXcOrYqSRD8-2rkpBcdhLS-_FH70_IJYUbCozerg1QycvCfyBjKhjkgrLyjIwBgOWyKvmIfAphna4Fq-hHMqK0kpVSMCbTum8bl9fRRMx-Pj5lpnPZxLS9bzYY_S7rV1kd_WDj4E2b_U3Mh6zpsim2jU0vc9zGxmH4TM5Xpg345XBekN_33xeTaT779fBjcjfLDZcq5o5TVCioc4xJawtwKAGNWhbMCRBgUTiJtgRmlpUrgBUgGaBzS1UpywS_IF_3uVvfvwwYot40wWLbmg77IWhJBS9KVib4bQ-t70PwuNLbtJPxO01Bv9emj7Ule3UIHZYbdCd56CmB6wMwIW298qazTTg5LkQhFEsu37smRHw9zo1_1qXkUujFvNZcqOkf-k_o-pRrbNDrfvBd6u4_H3wDiaOOyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71534626</pqid></control><display><type>article</type><title>Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Pometun, Maxim S ; Gundusharma, Usha M ; Richardson, John F ; Wittebort, Richard J</creator><creatorcontrib>Pometun, Maxim S ; Gundusharma, Usha M ; Richardson, John F ; Wittebort, Richard J</creatorcontrib><description>The peptide hydrates Gly-Gly-Val·2H2O (GGV) and Gly-Ala-Leu·3H2O (GAL) are known to adopt α-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR (2H and 17O) study of these peptides. From TGA and DSC, the average enthalpy per H-bond is 15 kJ/mol. The dynamics and average orientation of the hydrate are studied by powder and single-crystal 2H NMR. Whereas waters that are shown by the X-ray structure to be coordinated by four hydrogen bonds do not yield observable 2H NMR signals at room temperature, two of the three triply coordinated waters yield residual 2H quadrupole coupling tensors characteristic of rapid 180° flip motions and the orientation of the residual tensor is that expected from the X-ray structure-derived H-bonding pattern. At −65 °C, the flip motions of triply coordinated water in GGV slow into the 2H NMR intermediate exchange regime whereas the tetrahedrally coordinated water approaches the slow-exchange limit and yields an observable NMR signal. Extensive isotope exchange between water vapor and crystalline GGV establishes the presence of additional hydrate dynamics and solid-state proton transfer along a chain of water-bridged protonated α-amino groups.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja017364r</identifier><identifier>PMID: 11878990</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Calorimetry, Differential Scanning ; Crystallography, X-Ray ; Fundamental and applied biological sciences. Psychology ; Hydrogen Bonding ; Intermolecular dynamics ; Intermolecular phenomena ; Models, Molecular ; Molecular biophysics ; Nuclear Magnetic Resonance, Biomolecular - methods ; Oligopeptides - chemistry ; Protein Structure, Secondary ; Thermodynamics ; Water - chemistry</subject><ispartof>Journal of the American Chemical Society, 2002-03, Vol.124 (10), p.2345-2351</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253</citedby><cites>FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13554592$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11878990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pometun, Maxim S</creatorcontrib><creatorcontrib>Gundusharma, Usha M</creatorcontrib><creatorcontrib>Richardson, John F</creatorcontrib><creatorcontrib>Wittebort, Richard J</creatorcontrib><title>Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The peptide hydrates Gly-Gly-Val·2H2O (GGV) and Gly-Ala-Leu·3H2O (GAL) are known to adopt α-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR (2H and 17O) study of these peptides. From TGA and DSC, the average enthalpy per H-bond is 15 kJ/mol. The dynamics and average orientation of the hydrate are studied by powder and single-crystal 2H NMR. Whereas waters that are shown by the X-ray structure to be coordinated by four hydrogen bonds do not yield observable 2H NMR signals at room temperature, two of the three triply coordinated waters yield residual 2H quadrupole coupling tensors characteristic of rapid 180° flip motions and the orientation of the residual tensor is that expected from the X-ray structure-derived H-bonding pattern. At −65 °C, the flip motions of triply coordinated water in GGV slow into the 2H NMR intermediate exchange regime whereas the tetrahedrally coordinated water approaches the slow-exchange limit and yields an observable NMR signal. Extensive isotope exchange between water vapor and crystalline GGV establishes the presence of additional hydrate dynamics and solid-state proton transfer along a chain of water-bridged protonated α-amino groups.</description><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Crystallography, X-Ray</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen Bonding</subject><subject>Intermolecular dynamics</subject><subject>Intermolecular phenomena</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Oligopeptides - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpt0EFr2zAUB3AxWpas26FfoPjSwQ5unyTLso4lrM0g3UKdbbCLUKQXcOrYqSRD8-2rkpBcdhLS-_FH70_IJYUbCozerg1QycvCfyBjKhjkgrLyjIwBgOWyKvmIfAphna4Fq-hHMqK0kpVSMCbTum8bl9fRRMx-Pj5lpnPZxLS9bzYY_S7rV1kd_WDj4E2b_U3Mh6zpsim2jU0vc9zGxmH4TM5Xpg345XBekN_33xeTaT779fBjcjfLDZcq5o5TVCioc4xJawtwKAGNWhbMCRBgUTiJtgRmlpUrgBUgGaBzS1UpywS_IF_3uVvfvwwYot40wWLbmg77IWhJBS9KVib4bQ-t70PwuNLbtJPxO01Bv9emj7Ule3UIHZYbdCd56CmB6wMwIW298qazTTg5LkQhFEsu37smRHw9zo1_1qXkUujFvNZcqOkf-k_o-pRrbNDrfvBd6u4_H3wDiaOOyA</recordid><startdate>20020313</startdate><enddate>20020313</enddate><creator>Pometun, Maxim S</creator><creator>Gundusharma, Usha M</creator><creator>Richardson, John F</creator><creator>Wittebort, Richard J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020313</creationdate><title>Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides</title><author>Pometun, Maxim S ; Gundusharma, Usha M ; Richardson, John F ; Wittebort, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Crystallography, X-Ray</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen Bonding</topic><topic>Intermolecular dynamics</topic><topic>Intermolecular phenomena</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Oligopeptides - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pometun, Maxim S</creatorcontrib><creatorcontrib>Gundusharma, Usha M</creatorcontrib><creatorcontrib>Richardson, John F</creatorcontrib><creatorcontrib>Wittebort, Richard J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pometun, Maxim S</au><au>Gundusharma, Usha M</au><au>Richardson, John F</au><au>Wittebort, Richard J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2002-03-13</date><risdate>2002</risdate><volume>124</volume><issue>10</issue><spage>2345</spage><epage>2351</epage><pages>2345-2351</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>The peptide hydrates Gly-Gly-Val·2H2O (GGV) and Gly-Ala-Leu·3H2O (GAL) are known to adopt α-helical configurations containing waters of hydration in which each water is H-bonded to three or four peptide groups. Herein we report a thermodynamic and solid-state NMR (2H and 17O) study of these peptides. From TGA and DSC, the average enthalpy per H-bond is 15 kJ/mol. The dynamics and average orientation of the hydrate are studied by powder and single-crystal 2H NMR. Whereas waters that are shown by the X-ray structure to be coordinated by four hydrogen bonds do not yield observable 2H NMR signals at room temperature, two of the three triply coordinated waters yield residual 2H quadrupole coupling tensors characteristic of rapid 180° flip motions and the orientation of the residual tensor is that expected from the X-ray structure-derived H-bonding pattern. At −65 °C, the flip motions of triply coordinated water in GGV slow into the 2H NMR intermediate exchange regime whereas the tetrahedrally coordinated water approaches the slow-exchange limit and yields an observable NMR signal. Extensive isotope exchange between water vapor and crystalline GGV establishes the presence of additional hydrate dynamics and solid-state proton transfer along a chain of water-bridged protonated α-amino groups.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11878990</pmid><doi>10.1021/ja017364r</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2002-03, Vol.124 (10), p.2345-2351
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_71534626
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biological and medical sciences
Calorimetry, Differential Scanning
Crystallography, X-Ray
Fundamental and applied biological sciences. Psychology
Hydrogen Bonding
Intermolecular dynamics
Intermolecular phenomena
Models, Molecular
Molecular biophysics
Nuclear Magnetic Resonance, Biomolecular - methods
Oligopeptides - chemistry
Protein Structure, Secondary
Thermodynamics
Water - chemistry
title Solid-State NMR and Calorimetry of Structural Waters in Helical Peptides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T12%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20NMR%20and%20Calorimetry%20of%20Structural%20Waters%20in%20Helical%20Peptides&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Pometun,%20Maxim%20S&rft.date=2002-03-13&rft.volume=124&rft.issue=10&rft.spage=2345&rft.epage=2351&rft.pages=2345-2351&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja017364r&rft_dat=%3Cproquest_cross%3E71534626%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-d31e9e51dd227cc40de70ea9b42d5050ce5d7ec602ab8d40240720eddb989c253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71534626&rft_id=info:pmid/11878990&rfr_iscdi=true