Loading…

Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)

A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both cr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2001-04, Vol.94 (2), p.529-540
Main Authors: Onstad, David W., Guse, Charles A., Spencer, Joseph L., Levine, Eli, Gray, Michael E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73
cites cdi_FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73
container_end_page 540
container_issue 2
container_start_page 529
container_title Journal of economic entomology
container_volume 94
creator Onstad, David W.
Guse, Charles A.
Spencer, Joseph L.
Levine, Eli
Gray, Michael E.
description A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance >99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to >99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2–9 yr with refuges occupying 5–30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).
doi_str_mv 10.1603/0022-0493-94.2.529
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70820609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70820609</sourcerecordid><originalsourceid>FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73</originalsourceid><addsrcrecordid>eNqNkEtLxDAQx4Mouj6-gAfJQUQPXfPqI96kPkERRNFbSNKpVttmTbrIfnuz7qIePU2G-c1_wg-hXUrGNCP8mBDGEiIkT6QYs3HK5AoaUcmLhEn6vIpGP8AG2gzhjRCaMUrW0QalnLMiJSP0fusqaJv-BQ-vgM9mve4aG7Cr8WmlJ4MeGtfjweEHr_vwAn1jcel8j80MP0EYID6_-3vnhk_nO3xYuhbcJE70CS5f_Sy4Lh6oNBxto7VatwF2lnULPV6cP5RXyc3d5XV5epMYnskhYUVlpUwNq4StRc5tnjJmoJaFBZZaQwi3cUS1lEZoDcIAraWpUm1zKkzOt9DBInfi3cc0_lJ1TbDQtroHNw0qJwUjGZERZAvQeheCh1pNfNNpP1OUqLliNTeo5gaVFIqpqDgu7S3Tp6aD6ndl6TQC-0tAB6vbOpqzTfgTnUmRzXPIAjONcz385_QXSgCTaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70820609</pqid></control><display><type>article</type><title>Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)</title><source>Oxford University Press</source><creator>Onstad, David W. ; Guse, Charles A. ; Spencer, Joseph L. ; Levine, Eli ; Gray, Michael E.</creator><creatorcontrib>Onstad, David W. ; Guse, Charles A. ; Spencer, Joseph L. ; Levine, Eli ; Gray, Michael E.</creatorcontrib><description>A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance &gt;99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to &gt;99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2–9 yr with refuges occupying 5–30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).</description><identifier>ISSN: 0022-0493</identifier><identifier>EISSN: 1938-291X</identifier><identifier>EISSN: 0022-0493</identifier><identifier>DOI: 10.1603/0022-0493-94.2.529</identifier><identifier>PMID: 11332850</identifier><identifier>CODEN: JEENAI</identifier><language>eng</language><publisher>Lanham, MD: Entomological Society of America</publisher><subject>Adaptation, Physiological - genetics ; Agronomy. Soil science and plant productions ; Animals ; Biological and medical sciences ; Chemical control ; Coleoptera - genetics ; Computer Simulation ; Control ; Diabrotica virgifera virgifera LeConte ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics and breeding of economic plants ; host plant resistance ; Insecticide Resistance ; INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT ; Male ; Models, Genetic ; Pest animals ; Pest resistance ; Phytopathology. Animal pests. Plant and forest protection ; Plants, Genetically Modified ; population genetics ; Protozoa. Invertebrates ; resistance management ; simulation model ; Varietal selection. Specialized plant breeding, plant breeding aims ; Zea mays</subject><ispartof>Journal of economic entomology, 2001-04, Vol.94 (2), p.529-540</ispartof><rights>Entomological Society of America</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73</citedby><cites>FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1069469$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11332850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onstad, David W.</creatorcontrib><creatorcontrib>Guse, Charles A.</creatorcontrib><creatorcontrib>Spencer, Joseph L.</creatorcontrib><creatorcontrib>Levine, Eli</creatorcontrib><creatorcontrib>Gray, Michael E.</creatorcontrib><title>Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)</title><title>Journal of economic entomology</title><addtitle>J Econ Entomol</addtitle><description>A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance &gt;99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to &gt;99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2–9 yr with refuges occupying 5–30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).</description><subject>Adaptation, Physiological - genetics</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Chemical control</subject><subject>Coleoptera - genetics</subject><subject>Computer Simulation</subject><subject>Control</subject><subject>Diabrotica virgifera virgifera LeConte</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics and breeding of economic plants</subject><subject>host plant resistance</subject><subject>Insecticide Resistance</subject><subject>INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT</subject><subject>Male</subject><subject>Models, Genetic</subject><subject>Pest animals</subject><subject>Pest resistance</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plants, Genetically Modified</subject><subject>population genetics</subject><subject>Protozoa. Invertebrates</subject><subject>resistance management</subject><subject>simulation model</subject><subject>Varietal selection. Specialized plant breeding, plant breeding aims</subject><subject>Zea mays</subject><issn>0022-0493</issn><issn>1938-291X</issn><issn>0022-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAQx4Mouj6-gAfJQUQPXfPqI96kPkERRNFbSNKpVttmTbrIfnuz7qIePU2G-c1_wg-hXUrGNCP8mBDGEiIkT6QYs3HK5AoaUcmLhEn6vIpGP8AG2gzhjRCaMUrW0QalnLMiJSP0fusqaJv-BQ-vgM9mve4aG7Cr8WmlJ4MeGtfjweEHr_vwAn1jcel8j80MP0EYID6_-3vnhk_nO3xYuhbcJE70CS5f_Sy4Lh6oNBxto7VatwF2lnULPV6cP5RXyc3d5XV5epMYnskhYUVlpUwNq4StRc5tnjJmoJaFBZZaQwi3cUS1lEZoDcIAraWpUm1zKkzOt9DBInfi3cc0_lJ1TbDQtroHNw0qJwUjGZERZAvQeheCh1pNfNNpP1OUqLliNTeo5gaVFIqpqDgu7S3Tp6aD6ndl6TQC-0tAB6vbOpqzTfgTnUmRzXPIAjONcz385_QXSgCTaw</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Onstad, David W.</creator><creator>Guse, Charles A.</creator><creator>Spencer, Joseph L.</creator><creator>Levine, Eli</creator><creator>Gray, Michael E.</creator><general>Entomological Society of America</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)</title><author>Onstad, David W. ; Guse, Charles A. ; Spencer, Joseph L. ; Levine, Eli ; Gray, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Chemical control</topic><topic>Coleoptera - genetics</topic><topic>Computer Simulation</topic><topic>Control</topic><topic>Diabrotica virgifera virgifera LeConte</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics and breeding of economic plants</topic><topic>host plant resistance</topic><topic>Insecticide Resistance</topic><topic>INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT</topic><topic>Male</topic><topic>Models, Genetic</topic><topic>Pest animals</topic><topic>Pest resistance</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plants, Genetically Modified</topic><topic>population genetics</topic><topic>Protozoa. Invertebrates</topic><topic>resistance management</topic><topic>simulation model</topic><topic>Varietal selection. Specialized plant breeding, plant breeding aims</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onstad, David W.</creatorcontrib><creatorcontrib>Guse, Charles A.</creatorcontrib><creatorcontrib>Spencer, Joseph L.</creatorcontrib><creatorcontrib>Levine, Eli</creatorcontrib><creatorcontrib>Gray, Michael E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of economic entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onstad, David W.</au><au>Guse, Charles A.</au><au>Spencer, Joseph L.</au><au>Levine, Eli</au><au>Gray, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)</atitle><jtitle>Journal of economic entomology</jtitle><addtitle>J Econ Entomol</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>94</volume><issue>2</issue><spage>529</spage><epage>540</epage><pages>529-540</pages><issn>0022-0493</issn><eissn>1938-291X</eissn><eissn>0022-0493</eissn><coden>JEENAI</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance &gt;99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to &gt;99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2–9 yr with refuges occupying 5–30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).</abstract><cop>Lanham, MD</cop><pub>Entomological Society of America</pub><pmid>11332850</pmid><doi>10.1603/0022-0493-94.2.529</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0493
ispartof Journal of economic entomology, 2001-04, Vol.94 (2), p.529-540
issn 0022-0493
1938-291X
0022-0493
language eng
recordid cdi_proquest_miscellaneous_70820609
source Oxford University Press
subjects Adaptation, Physiological - genetics
Agronomy. Soil science and plant productions
Animals
Biological and medical sciences
Chemical control
Coleoptera - genetics
Computer Simulation
Control
Diabrotica virgifera virgifera LeConte
Female
Fundamental and applied biological sciences. Psychology
Genetics and breeding of economic plants
host plant resistance
Insecticide Resistance
INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT
Male
Models, Genetic
Pest animals
Pest resistance
Phytopathology. Animal pests. Plant and forest protection
Plants, Genetically Modified
population genetics
Protozoa. Invertebrates
resistance management
simulation model
Varietal selection. Specialized plant breeding, plant breeding aims
Zea mays
title Modeling the Dynamics of Adaptation to Transgenic Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-10-02T10%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Dynamics%20of%20Adaptation%20to%20Transgenic%20Corn%20by%20Western%20Corn%20Rootworm%20(Coleoptera:%20Chrysomelidae)&rft.jtitle=Journal%20of%20economic%20entomology&rft.au=Onstad,%20David%20W.&rft.date=2001-04-01&rft.volume=94&rft.issue=2&rft.spage=529&rft.epage=540&rft.pages=529-540&rft.issn=0022-0493&rft.eissn=1938-291X&rft.coden=JEENAI&rft_id=info:doi/10.1603/0022-0493-94.2.529&rft_dat=%3Cproquest_cross%3E70820609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b369t-28dc995b2d4cf473c7522bef98ce25cb003cd4c1a99b4aae4be1f9bd5ac714b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70820609&rft_id=info:pmid/11332850&rfr_iscdi=true