Loading…

Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics

The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, an...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2007-06, Vol.144 (2), p.846-856
Main Authors: Terada, Rie, Johzuka-Hisatomi, Yasuyo, Saitoh, Miho, Asao, Hisayo, Iida, Shigeru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93
cites cdi_FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93
container_end_page 856
container_issue 2
container_start_page 846
container_title Plant physiology (Bethesda)
container_volume 144
creator Terada, Rie
Johzuka-Hisatomi, Yasuyo
Saitoh, Miho
Asao, Hisayo
Iida, Shigeru
description The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.
doi_str_mv 10.1104/pp.107.095992
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70607685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40065534</jstor_id><sourcerecordid>40065534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgei2cOQI-AK3LOOvxD6WirZIlZDK9hxNHHtxlcTBzh767_Eqq_bIySPNo1ea14R8YLBlDOS3ed4yaLZglDH8FdkwJXjFldSvyQagzKC1OSPnOT8CABNMviVnrJHS1IpvSHfjJkd3mPZuCdOedk_0No5xiPt4yPTe2Th2YcIlxIlipki_h7g4-2c6kmBxoLsYB-pjovfBOnp9mOwRl0VJjmOw-R1543HI7v3pvSAP1z92V7fV3a-bn1eXd5VVwiyVqKFX3kHf8970Hr3ktdLcSYMIjXW276yTtjNcWqMlmnIKYm0E595pb8QF-brmzin-Pbi8tGPI1g0DTq4c0zZQQ1Nr9V_ITF06U7zAaoU2xZyT8-2cwojpqWXQHttv57mMTbu2X_ynU_ChG13_ok91F_DlBDCX7nzCyYb84rSWdcNEcR9X95iXmJ73EqBWSsiy_7zuPcYW96lkPPzm5XcBGs00A_EPw-Ogkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19688952</pqid></control><display><type>article</type><title>Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics</title><source>Oxford University Press Journals</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Terada, Rie ; Johzuka-Hisatomi, Yasuyo ; Saitoh, Miho ; Asao, Hisayo ; Iida, Shigeru</creator><creatorcontrib>Terada, Rie ; Johzuka-Hisatomi, Yasuyo ; Saitoh, Miho ; Asao, Hisayo ; Iida, Shigeru</creatorcontrib><description>The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.107.095992</identifier><identifier>PMID: 17449652</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Alcohol Dehydrogenase - genetics ; Biological and medical sciences ; Breakthrough Technologies ; Bryopsida - genetics ; Callus ; Fundamental and applied biological sciences. Psychology ; Gene targeting ; Gene Targeting - methods ; Genes ; Genes. Genome ; Genetic vectors ; Genomes ; Genomics - methods ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mosses ; Oryza - genetics ; Oryza sativa ; Plants ; Plants, Genetically Modified ; Polymerase chain reaction ; Recombination, Genetic ; Rice ; Transgenes</subject><ispartof>Plant physiology (Bethesda), 2007-06, Vol.144 (2), p.846-856</ispartof><rights>Copyright 2007 American Society of Plant Biologists</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93</citedby><cites>FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40065534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40065534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18846713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17449652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terada, Rie</creatorcontrib><creatorcontrib>Johzuka-Hisatomi, Yasuyo</creatorcontrib><creatorcontrib>Saitoh, Miho</creatorcontrib><creatorcontrib>Asao, Hisayo</creatorcontrib><creatorcontrib>Iida, Shigeru</creatorcontrib><title>Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.</description><subject>Alcohol Dehydrogenase - genetics</subject><subject>Biological and medical sciences</subject><subject>Breakthrough Technologies</subject><subject>Bryopsida - genetics</subject><subject>Callus</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene targeting</subject><subject>Gene Targeting - methods</subject><subject>Genes</subject><subject>Genes. Genome</subject><subject>Genetic vectors</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mosses</subject><subject>Oryza - genetics</subject><subject>Oryza sativa</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Polymerase chain reaction</subject><subject>Recombination, Genetic</subject><subject>Rice</subject><subject>Transgenes</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALgei2cOQI-AK3LOOvxD6WirZIlZDK9hxNHHtxlcTBzh767_Eqq_bIySPNo1ea14R8YLBlDOS3ed4yaLZglDH8FdkwJXjFldSvyQagzKC1OSPnOT8CABNMviVnrJHS1IpvSHfjJkd3mPZuCdOedk_0No5xiPt4yPTe2Th2YcIlxIlipki_h7g4-2c6kmBxoLsYB-pjovfBOnp9mOwRl0VJjmOw-R1543HI7v3pvSAP1z92V7fV3a-bn1eXd5VVwiyVqKFX3kHf8970Hr3ktdLcSYMIjXW276yTtjNcWqMlmnIKYm0E595pb8QF-brmzin-Pbi8tGPI1g0DTq4c0zZQQ1Nr9V_ITF06U7zAaoU2xZyT8-2cwojpqWXQHttv57mMTbu2X_ynU_ChG13_ok91F_DlBDCX7nzCyYb84rSWdcNEcR9X95iXmJ73EqBWSsiy_7zuPcYW96lkPPzm5XcBGs00A_EPw-Ogkg</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Terada, Rie</creator><creator>Johzuka-Hisatomi, Yasuyo</creator><creator>Saitoh, Miho</creator><creator>Asao, Hisayo</creator><creator>Iida, Shigeru</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070601</creationdate><title>Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics</title><author>Terada, Rie ; Johzuka-Hisatomi, Yasuyo ; Saitoh, Miho ; Asao, Hisayo ; Iida, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alcohol Dehydrogenase - genetics</topic><topic>Biological and medical sciences</topic><topic>Breakthrough Technologies</topic><topic>Bryopsida - genetics</topic><topic>Callus</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene targeting</topic><topic>Gene Targeting - methods</topic><topic>Genes</topic><topic>Genes. Genome</topic><topic>Genetic vectors</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mosses</topic><topic>Oryza - genetics</topic><topic>Oryza sativa</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Polymerase chain reaction</topic><topic>Recombination, Genetic</topic><topic>Rice</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terada, Rie</creatorcontrib><creatorcontrib>Johzuka-Hisatomi, Yasuyo</creatorcontrib><creatorcontrib>Saitoh, Miho</creatorcontrib><creatorcontrib>Asao, Hisayo</creatorcontrib><creatorcontrib>Iida, Shigeru</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terada, Rie</au><au>Johzuka-Hisatomi, Yasuyo</au><au>Saitoh, Miho</au><au>Asao, Hisayo</au><au>Iida, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>144</volume><issue>2</issue><spage>846</spage><epage>856</epage><pages>846-856</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><notes>http://www.plantphysiol.org/</notes><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>17449652</pmid><doi>10.1104/pp.107.095992</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2007-06, Vol.144 (2), p.846-856
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_70607685
source Oxford University Press Journals; JSTOR Archival Journals and Primary Sources Collection
subjects Alcohol Dehydrogenase - genetics
Biological and medical sciences
Breakthrough Technologies
Bryopsida - genetics
Callus
Fundamental and applied biological sciences. Psychology
Gene targeting
Gene Targeting - methods
Genes
Genes. Genome
Genetic vectors
Genomes
Genomics - methods
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Mosses
Oryza - genetics
Oryza sativa
Plants
Plants, Genetically Modified
Polymerase chain reaction
Recombination, Genetic
Rice
Transgenes
title Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T23%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Targeting%20by%20Homologous%20Recombination%20as%20a%20Biotechnological%20Tool%20for%20Rice%20Functional%20Genomics&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Terada,%20Rie&rft.date=2007-06-01&rft.volume=144&rft.issue=2&rft.spage=846&rft.epage=856&rft.pages=846-856&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.107.095992&rft_dat=%3Cjstor_proqu%3E40065534%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-360d5fe0dd2d9dfaf426582e49aa07cecdbce4cb924c984a9314aa69322fe8f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19688952&rft_id=info:pmid/17449652&rft_jstor_id=40065534&rfr_iscdi=true