Loading…

Docking in Metal-Organic Frameworks

The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of sev...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2009-08, Vol.325 (5942), p.855-859
Main Authors: Li, Qiaowei, Zhang, Wenyu, Miljanić, Ognjen Š, Sue, Chi-Hau, Zhao, Yan-Li, Liu, Lihua, Knobler, Carolyn B, Stoddart, J. Fraser, Yaghi, Omar M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13
cites cdi_FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13
container_end_page 859
container_issue 5942
container_start_page 855
container_title Science (American Association for the Advancement of Science)
container_volume 325
creator Li, Qiaowei
Zhang, Wenyu
Miljanić, Ognjen Š
Sue, Chi-Hau
Zhao, Yan-Li
Liu, Lihua
Knobler, Carolyn B
Stoddart, J. Fraser
Yaghi, Omar M
description The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT²⁺) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid- and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT²⁺ inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT²⁺, indicating the importance of the macrocyclic polyether in PQT²⁺ docking.
doi_str_mv 10.1126/science.1175441
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_67583118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20544315</jstor_id><sourcerecordid>20544315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13</originalsourceid><addsrcrecordid>eNqFkE1P4zAQhq3VoqV8nPe0uxUIboEZjz_iIyqfEogDcLYc16lS0gTsVoh_j6tGIO2Fk2W9z7yjeRj7jXCCyNVp8k3ofMgfLYXAH2yEYGRhONBPNgIgVZSg5TbbSWkOkDNDv9g2GqVNCWbEDs97_9x0s3HTje_C0rXFfZy5rvHjy-gW4a2Pz2mPbdWuTWF_eHfZ4-XF4-S6uL2_upmc3RZeKrUsSqGcEVMDVJYlUuB1LWUlEch4LoUSoGtZkeKepljVeqoguMoEJwNChbTLjje1L7F_XYW0tIsm-dC2rgv9KlmlZUmI5bcgCU2SOGXw4D9w3q9il2-wHEkaIfl67ekG8rFPKYbavsRm4eK7RbBryXaQbAfJeeLvULuqFmH6xQ9WM3A0AC5519bRdb5JnxzPNwiu19yfDTdPyz5-5ZDXEMqc_9vkteutm8Xc8fTAAQlQqaxD0we7EZVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213594521</pqid></control><display><type>article</type><title>Docking in Metal-Organic Frameworks</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Li, Qiaowei ; Zhang, Wenyu ; Miljanić, Ognjen Š ; Sue, Chi-Hau ; Zhao, Yan-Li ; Liu, Lihua ; Knobler, Carolyn B ; Stoddart, J. Fraser ; Yaghi, Omar M</creator><creatorcontrib>Li, Qiaowei ; Zhang, Wenyu ; Miljanić, Ognjen Š ; Sue, Chi-Hau ; Zhao, Yan-Li ; Liu, Lihua ; Knobler, Carolyn B ; Stoddart, J. Fraser ; Yaghi, Omar M</creatorcontrib><description>The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT²⁺) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid- and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT²⁺ inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT²⁺, indicating the importance of the macrocyclic polyether in PQT²⁺ docking.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1175441</identifier><identifier>PMID: 19679809</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Applied sciences ; Atoms ; Chemical bonds ; Chemical compounds ; Crown ethers ; Crystal structure ; Crystallography ; Crystals ; Cubic crystals ; Exact sciences and technology ; Molecules ; Nuclear magnetic resonance ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Rotaxanes ; Structure, morphology and analysis ; Topology ; X ray diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 2009-08, Vol.325 (5942), p.855-859</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13</citedby><cites>FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20544315$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20544315$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,786,790,2902,2903,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21834279$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19679809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaowei</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Miljanić, Ognjen Š</creatorcontrib><creatorcontrib>Sue, Chi-Hau</creatorcontrib><creatorcontrib>Zhao, Yan-Li</creatorcontrib><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Knobler, Carolyn B</creatorcontrib><creatorcontrib>Stoddart, J. Fraser</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><title>Docking in Metal-Organic Frameworks</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT²⁺) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid- and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT²⁺ inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT²⁺, indicating the importance of the macrocyclic polyether in PQT²⁺ docking.</description><subject>Applied sciences</subject><subject>Atoms</subject><subject>Chemical bonds</subject><subject>Chemical compounds</subject><subject>Crown ethers</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Cubic crystals</subject><subject>Exact sciences and technology</subject><subject>Molecules</subject><subject>Nuclear magnetic resonance</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Rotaxanes</subject><subject>Structure, morphology and analysis</subject><subject>Topology</subject><subject>X ray diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P4zAQhq3VoqV8nPe0uxUIboEZjz_iIyqfEogDcLYc16lS0gTsVoh_j6tGIO2Fk2W9z7yjeRj7jXCCyNVp8k3ofMgfLYXAH2yEYGRhONBPNgIgVZSg5TbbSWkOkDNDv9g2GqVNCWbEDs97_9x0s3HTje_C0rXFfZy5rvHjy-gW4a2Pz2mPbdWuTWF_eHfZ4-XF4-S6uL2_upmc3RZeKrUsSqGcEVMDVJYlUuB1LWUlEch4LoUSoGtZkeKepljVeqoguMoEJwNChbTLjje1L7F_XYW0tIsm-dC2rgv9KlmlZUmI5bcgCU2SOGXw4D9w3q9il2-wHEkaIfl67ekG8rFPKYbavsRm4eK7RbBryXaQbAfJeeLvULuqFmH6xQ9WM3A0AC5519bRdb5JnxzPNwiu19yfDTdPyz5-5ZDXEMqc_9vkteutm8Xc8fTAAQlQqaxD0we7EZVX</recordid><startdate>20090814</startdate><enddate>20090814</enddate><creator>Li, Qiaowei</creator><creator>Zhang, Wenyu</creator><creator>Miljanić, Ognjen Š</creator><creator>Sue, Chi-Hau</creator><creator>Zhao, Yan-Li</creator><creator>Liu, Lihua</creator><creator>Knobler, Carolyn B</creator><creator>Stoddart, J. Fraser</creator><creator>Yaghi, Omar M</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090814</creationdate><title>Docking in Metal-Organic Frameworks</title><author>Li, Qiaowei ; Zhang, Wenyu ; Miljanić, Ognjen Š ; Sue, Chi-Hau ; Zhao, Yan-Li ; Liu, Lihua ; Knobler, Carolyn B ; Stoddart, J. Fraser ; Yaghi, Omar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Atoms</topic><topic>Chemical bonds</topic><topic>Chemical compounds</topic><topic>Crown ethers</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Cubic crystals</topic><topic>Exact sciences and technology</topic><topic>Molecules</topic><topic>Nuclear magnetic resonance</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Rotaxanes</topic><topic>Structure, morphology and analysis</topic><topic>Topology</topic><topic>X ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaowei</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><creatorcontrib>Miljanić, Ognjen Š</creatorcontrib><creatorcontrib>Sue, Chi-Hau</creatorcontrib><creatorcontrib>Zhao, Yan-Li</creatorcontrib><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Knobler, Carolyn B</creatorcontrib><creatorcontrib>Stoddart, J. Fraser</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaowei</au><au>Zhang, Wenyu</au><au>Miljanić, Ognjen Š</au><au>Sue, Chi-Hau</au><au>Zhao, Yan-Li</au><au>Liu, Lihua</au><au>Knobler, Carolyn B</au><au>Stoddart, J. Fraser</au><au>Yaghi, Omar M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Docking in Metal-Organic Frameworks</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-08-14</date><risdate>2009</risdate><volume>325</volume><issue>5942</issue><spage>855</spage><epage>859</epage><pages>855-859</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><abstract>The use of metal-organic frameworks (MOFs) so far has largely relied on nonspecific binding interactions to host small molecular guests. We used long organic struts (approximately 2 nanometers) incorporating 34- and 36-membered macrocyclic polyethers as recognition modules in the construction of several crystalline primitive cubic frameworks that engage in specific binding in a way not observed in passive, open reticulated geometries. MOF-1001 is capable of docking paraquat dication (PQT²⁺) guests within the macrocycles in a stereoelectronically controlled fashion. This act of specific complexation yields quantitatively the corresponding MOF-1001 pseudorotaxanes, as confirmed by x-ray diffraction and by solid- and solution-state nuclear magnetic resonance spectroscopic studies performed on MOF-1001, its pseudorotaxanes, and their molecular strut precursors. A control experiment involving the attempted inclusion of PQT²⁺ inside a framework (MOF-177) devoid of polyether struts showed negligible uptake of PQT²⁺, indicating the importance of the macrocyclic polyether in PQT²⁺ docking.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19679809</pmid><doi>10.1126/science.1175441</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-08, Vol.325 (5942), p.855-859
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_67583118
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection
subjects Applied sciences
Atoms
Chemical bonds
Chemical compounds
Crown ethers
Crystal structure
Crystallography
Crystals
Cubic crystals
Exact sciences and technology
Molecules
Nuclear magnetic resonance
Organic polymers
Physicochemistry of polymers
Properties and characterization
Rotaxanes
Structure, morphology and analysis
Topology
X ray diffraction
title Docking in Metal-Organic Frameworks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T11%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Docking%20in%20Metal-Organic%20Frameworks&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Li,%20Qiaowei&rft.date=2009-08-14&rft.volume=325&rft.issue=5942&rft.spage=855&rft.epage=859&rft.pages=855-859&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1175441&rft_dat=%3Cjstor_proqu%3E20544315%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-846a94d90388813e2ff55b51039c2546407f5b362c3d1bf7d60eab9ea5e10b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213594521&rft_id=info:pmid/19679809&rft_jstor_id=20544315&rfr_iscdi=true