Loading…

Zeta-carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene

The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2005-03, Vol.220 (5), p.785-793
Main Authors: Breitenbach, J, Sandmann, G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The plant carotenoid biosynthetic pathway to cyclic carotenes proceeds via carotene precursors in cis configuration. Involvement of individual isomers was elucidated by genetic complementation of desaturations and in vitro reactions of the corresponding enzyme. Determination of substrate and product specificity of phytoene and ζ-carotene desaturase revealed that 15-cisphytoene is converted to 9,15,9′-tricis-ζ-carotene with 15,9′-dicis-phytofluene as intermediate by the first desaturase. Prior to a subsequent conversion by ζ-carotene desaturase, the 15-cis double bond of 9,15,9′-tricis-ζ-carotene has to be (photo)isomerized to all-trans. Then, the resulting 9,9′-dicis-ζ-carotene is utilized by ζ-carotene desaturase via 7,9,9′-tricis-neurosporene to 7,9,7′,9′-tetracis-lycopene. Other ζ-carotene isomers that are assumed to be spontaneous isomerization products were not converted, except for the asymmetric 9-cis-ζ-carotene. This isomer is desaturated only to 7,9-dicis-neurosporene resembling a dead-end of the pathway. Prolycopene, the product of the desaturation reactions, is finally isomerized by a specific isomerase to all-trans-lycopene, which is a prerequisite for cyclization to β-carotene. The 5-cislycopene and the 9-cis-and 13-cis-β-carotene isomers detected in leaves are thought to originate independently from cis precursors by non-enzymatic isomerization of their all-trans forms.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-004-1395-2