Loading…

Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment

The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low-CO2 are under the control of the putative transcription factor Cia5. C. reinhardtii mut...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 2004-09, Vol.56 (1), p.125-132
Main Authors: Pollock, S.V, Prout, D.L. Jr, Godfrey, A.C, Lemaire, S.D, Moroney, J.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963
cites cdi_FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963
container_end_page 132
container_issue 1
container_start_page 125
container_title Plant molecular biology
container_volume 56
creator Pollock, S.V
Prout, D.L. Jr
Godfrey, A.C
Lemaire, S.D
Moroney, J.V
description The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low-CO2 are under the control of the putative transcription factor Cia5. C. reinhardtii mutants null for cia5 do not express several of the known low-CO2 inducible genes and do not grow in a low-CO2 environment. Two of the genes under the control of Cia5, Ccp1 and Ccp2, encode polypeptides that are localized to the chloroplast envelope and have a high degree of similarity to members of the mitochondrial carrier family of proteins. Since their discovery, Ccp1/2 have been candidates for bicarbonate uptake proteins of the chloroplast envelope membrane. In this report, RNA interference was successful in dramatically decreasing the abundance of the mRNAs for Ccp1 and Ccp2. The abundance of the Ccp1 and Ccp2 proteins were also reduced in the RNAi strains. The RNAi strains grew slower than WT in a low-CO2 environment, but did not exhibit a mutant carbon concentrating phenotype as determined by the cells' apparent affinity for dissolved inorganic carbon. Possible explanations of this RNAi phenotype are discussed.
doi_str_mv 10.1007/s11103-004-2650-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67179623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188759541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963</originalsourceid><addsrcrecordid>eNpdkc9q3DAQxk1pabZpH6CXVvTQU9yOLFmyjsX0HwRyaHMWWnu0VrCljSQn7Nv0UavNLhTKIEaC3_cxo6-q3lL4RAHk50QpBVYD8LoRLdT8WbWhrWR1C033vNoAFbLmnDYX1auU7gCKiomX1QVtBXDJmk31p59msxzGsARvEono_GTimJ0j-xhyeSbSD3tKjB-Pl4aYiAW7X13EkdgQyRz8rs4YF7KL4TFPV2S75ifMh0w8DpiSiYcnFq11g0OfyX4KOaSDzxMml66I88QUq8e6v2kI-gcXg18K-Lp6Yc2c8M25X1a3377-7n_U1zfff_ZfruuBKZZrOkopEHhrbaMkRQvYIWeAWNbsRGsMlKJo5MAZF1thGTNMqE4oxZUS7LL6ePIta9-vmLJeXBpwno3HsCYtJJVKNKyAH_4D78IafZlNS9FRrsopED1BQwwpRbR6H91SfkFT0Mfs9Ck7XbLTx-z0UfPubLxuFxz_Kc5hFeD9CbAmaLOLLunbXw1QBqCEAtWyvwmbntI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>768149814</pqid></control><display><type>article</type><title>Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment</title><source>Springer Link</source><creator>Pollock, S.V ; Prout, D.L. Jr ; Godfrey, A.C ; Lemaire, S.D ; Moroney, J.V</creator><creatorcontrib>Pollock, S.V ; Prout, D.L. Jr ; Godfrey, A.C ; Lemaire, S.D ; Moroney, J.V</creatorcontrib><description>The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low-CO2 are under the control of the putative transcription factor Cia5. C. reinhardtii mutants null for cia5 do not express several of the known low-CO2 inducible genes and do not grow in a low-CO2 environment. Two of the genes under the control of Cia5, Ccp1 and Ccp2, encode polypeptides that are localized to the chloroplast envelope and have a high degree of similarity to members of the mitochondrial carrier family of proteins. Since their discovery, Ccp1/2 have been candidates for bicarbonate uptake proteins of the chloroplast envelope membrane. In this report, RNA interference was successful in dramatically decreasing the abundance of the mRNAs for Ccp1 and Ccp2. The abundance of the Ccp1 and Ccp2 proteins were also reduced in the RNAi strains. The RNAi strains grew slower than WT in a low-CO2 environment, but did not exhibit a mutant carbon concentrating phenotype as determined by the cells' apparent affinity for dissolved inorganic carbon. Possible explanations of this RNAi phenotype are discussed.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-004-2650-4</identifier><identifier>PMID: 15604732</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Algal Proteins - genetics ; Algal Proteins - metabolism ; Animals ; bicarbonate transporters ; bicarbonates ; carbon dioxide ; Carbon Dioxide - metabolism ; Carbon Dioxide - pharmacology ; cell growth ; Chlamydomonas reinhardtii ; Chlamydomonas reinhardtii - drug effects ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - growth &amp; development ; chloroplasts ; Dose-Response Relationship, Drug ; gene silencing ; Genotype ; Kinetics ; membrane proteins ; messenger RNA ; mutants ; phenotype ; photosynthesis ; Photosynthesis - drug effects ; Photosynthesis - genetics ; Photosynthesis - physiology ; physiological transport ; polypeptides ; Proteins ; RNA Interference ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Time Factors ; transport proteins ; transporters</subject><ispartof>Plant molecular biology, 2004-09, Vol.56 (1), p.125-132</ispartof><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963</citedby><cites>FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15604732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollock, S.V</creatorcontrib><creatorcontrib>Prout, D.L. Jr</creatorcontrib><creatorcontrib>Godfrey, A.C</creatorcontrib><creatorcontrib>Lemaire, S.D</creatorcontrib><creatorcontrib>Moroney, J.V</creatorcontrib><title>Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low-CO2 are under the control of the putative transcription factor Cia5. C. reinhardtii mutants null for cia5 do not express several of the known low-CO2 inducible genes and do not grow in a low-CO2 environment. Two of the genes under the control of Cia5, Ccp1 and Ccp2, encode polypeptides that are localized to the chloroplast envelope and have a high degree of similarity to members of the mitochondrial carrier family of proteins. Since their discovery, Ccp1/2 have been candidates for bicarbonate uptake proteins of the chloroplast envelope membrane. In this report, RNA interference was successful in dramatically decreasing the abundance of the mRNAs for Ccp1 and Ccp2. The abundance of the Ccp1 and Ccp2 proteins were also reduced in the RNAi strains. The RNAi strains grew slower than WT in a low-CO2 environment, but did not exhibit a mutant carbon concentrating phenotype as determined by the cells' apparent affinity for dissolved inorganic carbon. Possible explanations of this RNAi phenotype are discussed.</description><subject>Algal Proteins - genetics</subject><subject>Algal Proteins - metabolism</subject><subject>Animals</subject><subject>bicarbonate transporters</subject><subject>bicarbonates</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon Dioxide - pharmacology</subject><subject>cell growth</subject><subject>Chlamydomonas reinhardtii</subject><subject>Chlamydomonas reinhardtii - drug effects</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - growth &amp; development</subject><subject>chloroplasts</subject><subject>Dose-Response Relationship, Drug</subject><subject>gene silencing</subject><subject>Genotype</subject><subject>Kinetics</subject><subject>membrane proteins</subject><subject>messenger RNA</subject><subject>mutants</subject><subject>phenotype</subject><subject>photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthesis - genetics</subject><subject>Photosynthesis - physiology</subject><subject>physiological transport</subject><subject>polypeptides</subject><subject>Proteins</subject><subject>RNA Interference</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><subject>transport proteins</subject><subject>transporters</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkc9q3DAQxk1pabZpH6CXVvTQU9yOLFmyjsX0HwRyaHMWWnu0VrCljSQn7Nv0UavNLhTKIEaC3_cxo6-q3lL4RAHk50QpBVYD8LoRLdT8WbWhrWR1C033vNoAFbLmnDYX1auU7gCKiomX1QVtBXDJmk31p59msxzGsARvEono_GTimJ0j-xhyeSbSD3tKjB-Pl4aYiAW7X13EkdgQyRz8rs4YF7KL4TFPV2S75ifMh0w8DpiSiYcnFq11g0OfyX4KOaSDzxMml66I88QUq8e6v2kI-gcXg18K-Lp6Yc2c8M25X1a3377-7n_U1zfff_ZfruuBKZZrOkopEHhrbaMkRQvYIWeAWNbsRGsMlKJo5MAZF1thGTNMqE4oxZUS7LL6ePIta9-vmLJeXBpwno3HsCYtJJVKNKyAH_4D78IafZlNS9FRrsopED1BQwwpRbR6H91SfkFT0Mfs9Ck7XbLTx-z0UfPubLxuFxz_Kc5hFeD9CbAmaLOLLunbXw1QBqCEAtWyvwmbntI</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Pollock, S.V</creator><creator>Prout, D.L. Jr</creator><creator>Godfrey, A.C</creator><creator>Lemaire, S.D</creator><creator>Moroney, J.V</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment</title><author>Pollock, S.V ; Prout, D.L. Jr ; Godfrey, A.C ; Lemaire, S.D ; Moroney, J.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algal Proteins - genetics</topic><topic>Algal Proteins - metabolism</topic><topic>Animals</topic><topic>bicarbonate transporters</topic><topic>bicarbonates</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon Dioxide - pharmacology</topic><topic>cell growth</topic><topic>Chlamydomonas reinhardtii</topic><topic>Chlamydomonas reinhardtii - drug effects</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - growth &amp; development</topic><topic>chloroplasts</topic><topic>Dose-Response Relationship, Drug</topic><topic>gene silencing</topic><topic>Genotype</topic><topic>Kinetics</topic><topic>membrane proteins</topic><topic>messenger RNA</topic><topic>mutants</topic><topic>phenotype</topic><topic>photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthesis - genetics</topic><topic>Photosynthesis - physiology</topic><topic>physiological transport</topic><topic>polypeptides</topic><topic>Proteins</topic><topic>RNA Interference</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><topic>transport proteins</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollock, S.V</creatorcontrib><creatorcontrib>Prout, D.L. Jr</creatorcontrib><creatorcontrib>Godfrey, A.C</creatorcontrib><creatorcontrib>Lemaire, S.D</creatorcontrib><creatorcontrib>Moroney, J.V</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollock, S.V</au><au>Prout, D.L. Jr</au><au>Godfrey, A.C</au><au>Lemaire, S.D</au><au>Moroney, J.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>56</volume><issue>1</issue><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><notes>http://www.kluweronline.com/issn/0167-4412/contents</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The unicellular green alga Chlamydomonas reinhardtii acclimates to a low-CO2 environment by modifying the expression of a number of messages. Many of the genes that increase in abundance during acclimation to low-CO2 are under the control of the putative transcription factor Cia5. C. reinhardtii mutants null for cia5 do not express several of the known low-CO2 inducible genes and do not grow in a low-CO2 environment. Two of the genes under the control of Cia5, Ccp1 and Ccp2, encode polypeptides that are localized to the chloroplast envelope and have a high degree of similarity to members of the mitochondrial carrier family of proteins. Since their discovery, Ccp1/2 have been candidates for bicarbonate uptake proteins of the chloroplast envelope membrane. In this report, RNA interference was successful in dramatically decreasing the abundance of the mRNAs for Ccp1 and Ccp2. The abundance of the Ccp1 and Ccp2 proteins were also reduced in the RNAi strains. The RNAi strains grew slower than WT in a low-CO2 environment, but did not exhibit a mutant carbon concentrating phenotype as determined by the cells' apparent affinity for dissolved inorganic carbon. Possible explanations of this RNAi phenotype are discussed.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>15604732</pmid><doi>10.1007/s11103-004-2650-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2004-09, Vol.56 (1), p.125-132
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_67179623
source Springer Link
subjects Algal Proteins - genetics
Algal Proteins - metabolism
Animals
bicarbonate transporters
bicarbonates
carbon dioxide
Carbon Dioxide - metabolism
Carbon Dioxide - pharmacology
cell growth
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - drug effects
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - growth & development
chloroplasts
Dose-Response Relationship, Drug
gene silencing
Genotype
Kinetics
membrane proteins
messenger RNA
mutants
phenotype
photosynthesis
Photosynthesis - drug effects
Photosynthesis - genetics
Photosynthesis - physiology
physiological transport
polypeptides
Proteins
RNA Interference
RNA, Messenger - genetics
RNA, Messenger - metabolism
Time Factors
transport proteins
transporters
title Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chlamydomonas%20reinhardtii%20proteins%20Ccp1%20and%20Ccp2%20are%20required%20for%20long-term%20growth,%20but%20are%20not%20necessary%20for%20efficient%20photosynthesis,%20in%20a%20low-CO2%20environment&rft.jtitle=Plant%20molecular%20biology&rft.au=Pollock,%20S.V&rft.date=2004-09-01&rft.volume=56&rft.issue=1&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-004-2650-4&rft_dat=%3Cproquest_cross%3E2188759541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-1d776e045ff2971ef0e8e430ee732865aa0a0a1ea7c4346b6f33a369869949963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=768149814&rft_id=info:pmid/15604732&rfr_iscdi=true