Loading…

High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles

Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with th...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2024-07, Vol.385 (6705), p.168-174
Main Authors: Coupland, Claire E., Karimi, Ryan, Bueler, Stephanie A., Liang, Yingke, Courbon, Gautier M., Di Trani, Justin M., Wong, Cassandra J., Saghian, Rayan, Youn, Ji-Young, Wang, Lu-Yang, Rubinstein, John L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1014-2d2bba7c87d6e60ebcf076d133311b4f442b15538c4264f5ac29cadc4a7a80ee3
container_end_page 174
container_issue 6705
container_start_page 168
container_title Science (American Association for the Advancement of Science)
container_volume 385
creator Coupland, Claire E.
Karimi, Ryan
Bueler, Stephanie A.
Liang, Yingke
Courbon, Gautier M.
Di Trani, Justin M.
Wong, Cassandra J.
Saghian, Rayan
Youn, Ji-Young
Wang, Lu-Yang
Rubinstein, John L.
description Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V 1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase–binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme’s rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V 1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme. Editor’s summary Chemical communication between neurons involves the rapid release of neurotransmitters into the synapse. Vesicular-type ATPase (V-ATPase) uses ATP to pump protons into synaptic vesicles, enabling neurotransmitter uptake from the cytosol before release. Coupland et al . isolated whole synaptic vesicles from rat brain and were able to determine high-resolution electron cryomicroscopy structures of the V-ATPase in its native membrane. The authors found several unexpected features that were not seen in structures of purified V-ATPase, including a stoichiometric complex with the protein synaptophysin. They also observed dissociation of the V1 head group under active conditions, consistent with prior biochemical work. —Michael A. Funk
doi_str_mv 10.1126/science.adp5577
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070838864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078668225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1014-2d2bba7c87d6e60ebcf076d133311b4f442b15538c4264f5ac29cadc4a7a80ee3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbPXgNevKTdr-xujqWoFQr1UL2GzWSiW9Js3E0L-femtCdPMzAPw_s-hDwyOmOMq3kEhy3gzFZdlml9RSaM5lmacyquyYRSoVJDdXZL7mLcUTrecjEhm5X7_kkDRt8ceufbBBuEPowLhMHvHQQfwXdD4uvkK11sP2zExLVJa3t3xCQOre16B8kRo4MG4z25qW0T8eEyp-Tz9WW7XKXrzdv7crFOgVEmU17xsrQajK4UKool1FSrigkhGCtlLSUvWZYJA5IrWWcWeA62Amm1NRRRTMnz-W8X_O8BY1_sXQRsGtuiP8RCUE2NMEbJEX36h-78IbRjuhNllDKcZyM1P1OnxjFgXXTB7W0YCkaLk-DiIri4CBZ_NGdxNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078668225</pqid></control><display><type>article</type><title>High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles</title><source>Science Online_科学在线</source><creator>Coupland, Claire E. ; Karimi, Ryan ; Bueler, Stephanie A. ; Liang, Yingke ; Courbon, Gautier M. ; Di Trani, Justin M. ; Wong, Cassandra J. ; Saghian, Rayan ; Youn, Ji-Young ; Wang, Lu-Yang ; Rubinstein, John L.</creator><creatorcontrib>Coupland, Claire E. ; Karimi, Ryan ; Bueler, Stephanie A. ; Liang, Yingke ; Courbon, Gautier M. ; Di Trani, Justin M. ; Wong, Cassandra J. ; Saghian, Rayan ; Youn, Ji-Young ; Wang, Lu-Yang ; Rubinstein, John L.</creatorcontrib><description>Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V 1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase–binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme’s rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V 1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme. Editor’s summary Chemical communication between neurons involves the rapid release of neurotransmitters into the synapse. Vesicular-type ATPase (V-ATPase) uses ATP to pump protons into synaptic vesicles, enabling neurotransmitter uptake from the cytosol before release. Coupland et al . isolated whole synaptic vesicles from rat brain and were able to determine high-resolution electron cryomicroscopy structures of the V-ATPase in its native membrane. The authors found several unexpected features that were not seen in structures of purified V-ATPase, including a stoichiometric complex with the protein synaptophysin. They also observed dissociation of the V1 head group under active conditions, consistent with prior biochemical work. —Michael A. Funk</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.adp5577</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Adenosine triphosphatase ; Chemical communication ; Cytosol ; H+-transporting ATPase ; High resolution ; Membrane proteins ; Membrane vesicles ; Neurotransmitters ; Protons ; Synaptic vesicles ; Synaptophysin ; Vesicles</subject><ispartof>Science (American Association for the Advancement of Science), 2024-07, Vol.385 (6705), p.168-174</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1014-2d2bba7c87d6e60ebcf076d133311b4f442b15538c4264f5ac29cadc4a7a80ee3</cites><orcidid>0000-0003-2300-4824 ; 0009-0000-3726-7014 ; 0000-0002-5399-944X ; 0009-0009-7292-3780 ; 0000-0002-6041-7532 ; 0000-0001-6799-5709 ; 0000-0001-6628-9087 ; 0000-0001-6247-8294 ; 0000-0003-0566-2209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,2902,2903,27957,27958</link.rule.ids></links><search><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Karimi, Ryan</creatorcontrib><creatorcontrib>Bueler, Stephanie A.</creatorcontrib><creatorcontrib>Liang, Yingke</creatorcontrib><creatorcontrib>Courbon, Gautier M.</creatorcontrib><creatorcontrib>Di Trani, Justin M.</creatorcontrib><creatorcontrib>Wong, Cassandra J.</creatorcontrib><creatorcontrib>Saghian, Rayan</creatorcontrib><creatorcontrib>Youn, Ji-Young</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><creatorcontrib>Rubinstein, John L.</creatorcontrib><title>High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles</title><title>Science (American Association for the Advancement of Science)</title><description>Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V 1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase–binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme’s rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V 1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme. Editor’s summary Chemical communication between neurons involves the rapid release of neurotransmitters into the synapse. Vesicular-type ATPase (V-ATPase) uses ATP to pump protons into synaptic vesicles, enabling neurotransmitter uptake from the cytosol before release. Coupland et al . isolated whole synaptic vesicles from rat brain and were able to determine high-resolution electron cryomicroscopy structures of the V-ATPase in its native membrane. The authors found several unexpected features that were not seen in structures of purified V-ATPase, including a stoichiometric complex with the protein synaptophysin. They also observed dissociation of the V1 head group under active conditions, consistent with prior biochemical work. —Michael A. Funk</description><subject>Adenosine triphosphatase</subject><subject>Chemical communication</subject><subject>Cytosol</subject><subject>H+-transporting ATPase</subject><subject>High resolution</subject><subject>Membrane proteins</subject><subject>Membrane vesicles</subject><subject>Neurotransmitters</subject><subject>Protons</subject><subject>Synaptic vesicles</subject><subject>Synaptophysin</subject><subject>Vesicles</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFbPXgNevKTdr-xujqWoFQr1UL2GzWSiW9Js3E0L-femtCdPMzAPw_s-hDwyOmOMq3kEhy3gzFZdlml9RSaM5lmacyquyYRSoVJDdXZL7mLcUTrecjEhm5X7_kkDRt8ceufbBBuEPowLhMHvHQQfwXdD4uvkK11sP2zExLVJa3t3xCQOre16B8kRo4MG4z25qW0T8eEyp-Tz9WW7XKXrzdv7crFOgVEmU17xsrQajK4UKool1FSrigkhGCtlLSUvWZYJA5IrWWcWeA62Amm1NRRRTMnz-W8X_O8BY1_sXQRsGtuiP8RCUE2NMEbJEX36h-78IbRjuhNllDKcZyM1P1OnxjFgXXTB7W0YCkaLk-DiIri4CBZ_NGdxNQ</recordid><startdate>20240712</startdate><enddate>20240712</enddate><creator>Coupland, Claire E.</creator><creator>Karimi, Ryan</creator><creator>Bueler, Stephanie A.</creator><creator>Liang, Yingke</creator><creator>Courbon, Gautier M.</creator><creator>Di Trani, Justin M.</creator><creator>Wong, Cassandra J.</creator><creator>Saghian, Rayan</creator><creator>Youn, Ji-Young</creator><creator>Wang, Lu-Yang</creator><creator>Rubinstein, John L.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2300-4824</orcidid><orcidid>https://orcid.org/0009-0000-3726-7014</orcidid><orcidid>https://orcid.org/0000-0002-5399-944X</orcidid><orcidid>https://orcid.org/0009-0009-7292-3780</orcidid><orcidid>https://orcid.org/0000-0002-6041-7532</orcidid><orcidid>https://orcid.org/0000-0001-6799-5709</orcidid><orcidid>https://orcid.org/0000-0001-6628-9087</orcidid><orcidid>https://orcid.org/0000-0001-6247-8294</orcidid><orcidid>https://orcid.org/0000-0003-0566-2209</orcidid></search><sort><creationdate>20240712</creationdate><title>High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles</title><author>Coupland, Claire E. ; Karimi, Ryan ; Bueler, Stephanie A. ; Liang, Yingke ; Courbon, Gautier M. ; Di Trani, Justin M. ; Wong, Cassandra J. ; Saghian, Rayan ; Youn, Ji-Young ; Wang, Lu-Yang ; Rubinstein, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1014-2d2bba7c87d6e60ebcf076d133311b4f442b15538c4264f5ac29cadc4a7a80ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine triphosphatase</topic><topic>Chemical communication</topic><topic>Cytosol</topic><topic>H+-transporting ATPase</topic><topic>High resolution</topic><topic>Membrane proteins</topic><topic>Membrane vesicles</topic><topic>Neurotransmitters</topic><topic>Protons</topic><topic>Synaptic vesicles</topic><topic>Synaptophysin</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coupland, Claire E.</creatorcontrib><creatorcontrib>Karimi, Ryan</creatorcontrib><creatorcontrib>Bueler, Stephanie A.</creatorcontrib><creatorcontrib>Liang, Yingke</creatorcontrib><creatorcontrib>Courbon, Gautier M.</creatorcontrib><creatorcontrib>Di Trani, Justin M.</creatorcontrib><creatorcontrib>Wong, Cassandra J.</creatorcontrib><creatorcontrib>Saghian, Rayan</creatorcontrib><creatorcontrib>Youn, Ji-Young</creatorcontrib><creatorcontrib>Wang, Lu-Yang</creatorcontrib><creatorcontrib>Rubinstein, John L.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coupland, Claire E.</au><au>Karimi, Ryan</au><au>Bueler, Stephanie A.</au><au>Liang, Yingke</au><au>Courbon, Gautier M.</au><au>Di Trani, Justin M.</au><au>Wong, Cassandra J.</au><au>Saghian, Rayan</au><au>Youn, Ji-Young</au><au>Wang, Lu-Yang</au><au>Rubinstein, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2024-07-12</date><risdate>2024</risdate><volume>385</volume><issue>6705</issue><spage>168</spage><epage>174</epage><pages>168-174</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V 1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase–binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme’s rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V 1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme. Editor’s summary Chemical communication between neurons involves the rapid release of neurotransmitters into the synapse. Vesicular-type ATPase (V-ATPase) uses ATP to pump protons into synaptic vesicles, enabling neurotransmitter uptake from the cytosol before release. Coupland et al . isolated whole synaptic vesicles from rat brain and were able to determine high-resolution electron cryomicroscopy structures of the V-ATPase in its native membrane. The authors found several unexpected features that were not seen in structures of purified V-ATPase, including a stoichiometric complex with the protein synaptophysin. They also observed dissociation of the V1 head group under active conditions, consistent with prior biochemical work. —Michael A. Funk</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.adp5577</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2300-4824</orcidid><orcidid>https://orcid.org/0009-0000-3726-7014</orcidid><orcidid>https://orcid.org/0000-0002-5399-944X</orcidid><orcidid>https://orcid.org/0009-0009-7292-3780</orcidid><orcidid>https://orcid.org/0000-0002-6041-7532</orcidid><orcidid>https://orcid.org/0000-0001-6799-5709</orcidid><orcidid>https://orcid.org/0000-0001-6628-9087</orcidid><orcidid>https://orcid.org/0000-0001-6247-8294</orcidid><orcidid>https://orcid.org/0000-0003-0566-2209</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2024-07, Vol.385 (6705), p.168-174
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_proquest_miscellaneous_3070838864
source Science Online_科学在线
subjects Adenosine triphosphatase
Chemical communication
Cytosol
H+-transporting ATPase
High resolution
Membrane proteins
Membrane vesicles
Neurotransmitters
Protons
Synaptic vesicles
Synaptophysin
Vesicles
title High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T14%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20electron%20cryomicroscopy%20of%20V-ATPase%20in%20native%20synaptic%20vesicles&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Coupland,%20Claire%20E.&rft.date=2024-07-12&rft.volume=385&rft.issue=6705&rft.spage=168&rft.epage=174&rft.pages=168-174&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.adp5577&rft_dat=%3Cproquest_cross%3E3078668225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1014-2d2bba7c87d6e60ebcf076d133311b4f442b15538c4264f5ac29cadc4a7a80ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078668225&rft_id=info:pmid/&rfr_iscdi=true