Loading…

Reproducibility and stability of silane layers in nanoconfined electrochemical systems

Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and b...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (21), p.15452-1546
Main Authors: Duleba, Dominik, Denuga, Shekemi, Johnson, Robert P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c332t-ddb71a71bb782800e50192919d8ebb2eaea2b7b67eebf88ff562237b296e868a3
container_end_page 1546
container_issue 21
container_start_page 15452
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Duleba, Dominik
Denuga, Shekemi
Johnson, Robert P
description Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and because the thickness of multilayered silanes can cover or block nanoscale features. Furthermore, in electrochemical devices, the silane layers experience additional perturbations, such as electric migration and electroosmotic force. Despite its importance, there appears to be no consensus in the current literature on the optimal methodology for nanopipette silanization, with significant variations in reported conditions. Herein, we systematically investigate the reproducibility and stability of liquid- and vapor-phase deposited silane layers inside nanopipettes. Electrochemical monitoring of the changing internal silanized surface reveals that vapor-deposited APTES generates surface modifications with the highest reproducibility, while vapor-deposited APTMS generates surface modifications of the highest stability over a 24-hour time period. Practical issues of silanizing nanoconfined systems are highlighted, and the importance of carefully chosen silanization conditions to yield stable and reproducible monolayers is emphasized as an underappreciated aspect in the development of novel nanoscale systems. The stability and reproducibility of liquid-phase and vapor-phase deposited silane layers in a nanoconfined electrochemical system is explored.
doi_str_mv 10.1039/d4cp01181c
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3055453919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055453919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-ddb71a71bb782800e50192919d8ebb2eaea2b7b67eebf88ff562237b296e868a3</originalsourceid><addsrcrecordid>eNpd0UlLxDAYBuAgijMuF-9KwIsIo1mapUepKwwool5Lkn7FDF3GpD3039txxhE8JSEPL1_eIHRCyRUlPL0uErcklGrqdtCUJpLPUqKT3e1eyQk6iHFBCKGC8n004VolSjA9RR-vsAxt0TtvfeW7AZumwLEzm1Nb4ugr0wCuzAAhYt_gxjSta5vSN1BgqMB1oXWfUHtnKhyH2EEdj9BeaaoIx5v1EL3f371lj7P588NTdjOfOc5ZNysKq6hR1FqlmSYEBKEpS2laaLCWgQHDrLJSAdhS67IUkjGuLEslaKkNP0QX69zxEV89xC6vfXRQrUZu-5hzIkQi-Jg40vN_dNH2oRmnG5WkQkqh5Kgu18qFNsYAZb4MvjZhyCnJV23nt0n28tN2NuKzTWRvayi29LfeEZyuQYhue_v3Xfwb7u-Eyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061566576</pqid></control><display><type>article</type><title>Reproducibility and stability of silane layers in nanoconfined electrochemical systems</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Duleba, Dominik ; Denuga, Shekemi ; Johnson, Robert P</creator><creatorcontrib>Duleba, Dominik ; Denuga, Shekemi ; Johnson, Robert P</creatorcontrib><description>Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and because the thickness of multilayered silanes can cover or block nanoscale features. Furthermore, in electrochemical devices, the silane layers experience additional perturbations, such as electric migration and electroosmotic force. Despite its importance, there appears to be no consensus in the current literature on the optimal methodology for nanopipette silanization, with significant variations in reported conditions. Herein, we systematically investigate the reproducibility and stability of liquid- and vapor-phase deposited silane layers inside nanopipettes. Electrochemical monitoring of the changing internal silanized surface reveals that vapor-deposited APTES generates surface modifications with the highest reproducibility, while vapor-deposited APTMS generates surface modifications of the highest stability over a 24-hour time period. Practical issues of silanizing nanoconfined systems are highlighted, and the importance of carefully chosen silanization conditions to yield stable and reproducible monolayers is emphasized as an underappreciated aspect in the development of novel nanoscale systems. The stability and reproducibility of liquid-phase and vapor-phase deposited silane layers in a nanoconfined electrochemical system is explored.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp01181c</identifier><identifier>PMID: 38747528</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Reproducibility ; Silanes ; Stability ; Vapor deposition ; Vapors</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (21), p.15452-1546</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-ddb71a71bb782800e50192919d8ebb2eaea2b7b67eebf88ff562237b296e868a3</cites><orcidid>0000-0002-8046-2138 ; 0000-0003-2121-465X ; 0000-0002-0618-2162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38747528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duleba, Dominik</creatorcontrib><creatorcontrib>Denuga, Shekemi</creatorcontrib><creatorcontrib>Johnson, Robert P</creatorcontrib><title>Reproducibility and stability of silane layers in nanoconfined electrochemical systems</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and because the thickness of multilayered silanes can cover or block nanoscale features. Furthermore, in electrochemical devices, the silane layers experience additional perturbations, such as electric migration and electroosmotic force. Despite its importance, there appears to be no consensus in the current literature on the optimal methodology for nanopipette silanization, with significant variations in reported conditions. Herein, we systematically investigate the reproducibility and stability of liquid- and vapor-phase deposited silane layers inside nanopipettes. Electrochemical monitoring of the changing internal silanized surface reveals that vapor-deposited APTES generates surface modifications with the highest reproducibility, while vapor-deposited APTMS generates surface modifications of the highest stability over a 24-hour time period. Practical issues of silanizing nanoconfined systems are highlighted, and the importance of carefully chosen silanization conditions to yield stable and reproducible monolayers is emphasized as an underappreciated aspect in the development of novel nanoscale systems. The stability and reproducibility of liquid-phase and vapor-phase deposited silane layers in a nanoconfined electrochemical system is explored.</description><subject>Reproducibility</subject><subject>Silanes</subject><subject>Stability</subject><subject>Vapor deposition</subject><subject>Vapors</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0UlLxDAYBuAgijMuF-9KwIsIo1mapUepKwwool5Lkn7FDF3GpD3039txxhE8JSEPL1_eIHRCyRUlPL0uErcklGrqdtCUJpLPUqKT3e1eyQk6iHFBCKGC8n004VolSjA9RR-vsAxt0TtvfeW7AZumwLEzm1Nb4ugr0wCuzAAhYt_gxjSta5vSN1BgqMB1oXWfUHtnKhyH2EEdj9BeaaoIx5v1EL3f371lj7P588NTdjOfOc5ZNysKq6hR1FqlmSYEBKEpS2laaLCWgQHDrLJSAdhS67IUkjGuLEslaKkNP0QX69zxEV89xC6vfXRQrUZu-5hzIkQi-Jg40vN_dNH2oRmnG5WkQkqh5Kgu18qFNsYAZb4MvjZhyCnJV23nt0n28tN2NuKzTWRvayi29LfeEZyuQYhue_v3Xfwb7u-Eyw</recordid><startdate>20240529</startdate><enddate>20240529</enddate><creator>Duleba, Dominik</creator><creator>Denuga, Shekemi</creator><creator>Johnson, Robert P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8046-2138</orcidid><orcidid>https://orcid.org/0000-0003-2121-465X</orcidid><orcidid>https://orcid.org/0000-0002-0618-2162</orcidid></search><sort><creationdate>20240529</creationdate><title>Reproducibility and stability of silane layers in nanoconfined electrochemical systems</title><author>Duleba, Dominik ; Denuga, Shekemi ; Johnson, Robert P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-ddb71a71bb782800e50192919d8ebb2eaea2b7b67eebf88ff562237b296e868a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Reproducibility</topic><topic>Silanes</topic><topic>Stability</topic><topic>Vapor deposition</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duleba, Dominik</creatorcontrib><creatorcontrib>Denuga, Shekemi</creatorcontrib><creatorcontrib>Johnson, Robert P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duleba, Dominik</au><au>Denuga, Shekemi</au><au>Johnson, Robert P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducibility and stability of silane layers in nanoconfined electrochemical systems</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-05-29</date><risdate>2024</risdate><volume>26</volume><issue>21</issue><spage>15452</spage><epage>1546</epage><pages>15452-1546</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><notes>https://doi.org/10.1039/d4cp01181c</notes><notes>Electronic supplementary information (ESI) available. See DOI</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Organosilanes are commonly utilized to attach bioreceptors to oxide surfaces. The deposition of such silane layers is especially challenging in nanoscale or nanoconfined devices, such as in nanopipettes, since rinsing off loosely bound silanes may not be possible due to geometric constrictions and because the thickness of multilayered silanes can cover or block nanoscale features. Furthermore, in electrochemical devices, the silane layers experience additional perturbations, such as electric migration and electroosmotic force. Despite its importance, there appears to be no consensus in the current literature on the optimal methodology for nanopipette silanization, with significant variations in reported conditions. Herein, we systematically investigate the reproducibility and stability of liquid- and vapor-phase deposited silane layers inside nanopipettes. Electrochemical monitoring of the changing internal silanized surface reveals that vapor-deposited APTES generates surface modifications with the highest reproducibility, while vapor-deposited APTMS generates surface modifications of the highest stability over a 24-hour time period. Practical issues of silanizing nanoconfined systems are highlighted, and the importance of carefully chosen silanization conditions to yield stable and reproducible monolayers is emphasized as an underappreciated aspect in the development of novel nanoscale systems. The stability and reproducibility of liquid-phase and vapor-phase deposited silane layers in a nanoconfined electrochemical system is explored.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38747528</pmid><doi>10.1039/d4cp01181c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8046-2138</orcidid><orcidid>https://orcid.org/0000-0003-2121-465X</orcidid><orcidid>https://orcid.org/0000-0002-0618-2162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (21), p.15452-1546
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_3055453919
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Reproducibility
Silanes
Stability
Vapor deposition
Vapors
title Reproducibility and stability of silane layers in nanoconfined electrochemical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducibility%20and%20stability%20of%20silane%20layers%20in%20nanoconfined%20electrochemical%20systems&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Duleba,%20Dominik&rft.date=2024-05-29&rft.volume=26&rft.issue=21&rft.spage=15452&rft.epage=1546&rft.pages=15452-1546&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp01181c&rft_dat=%3Cproquest_pubme%3E3055453919%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-ddb71a71bb782800e50192919d8ebb2eaea2b7b67eebf88ff562237b296e868a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061566576&rft_id=info:pmid/38747528&rfr_iscdi=true