Loading…
Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries
Lithium‐oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li‐O2 battery with LiClO4/dimethyl sulfoxide (DMSO)...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (31), p.e2306895-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 31 |
container_start_page | e2306895 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sousa, Bianca P. Lourenço, Tuanan C. Anchieta, Chayene G. Nepel, Thayane C. M. Filho, Rubens M. Da Silva, Juarez L. F. Doubek, Gustavo |
description | Lithium‐oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li‐O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO‐Li+‐anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactive O2−${\rm O}_2^{-}$. On charging, the presence of Li+ indicates the formation of a lithium‐deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li‐O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li‐O2 system.
Experiments and calculations allowed a detailed explanation of the discharge/charge mechanisms of a Li‐O2 cell using a carbon electrode and high‐DN solvent. It revealed a dynamic reversible change in the DMSO molecule resulting from interaction of LiO2–(solvent)n, thereby confirming the solution mechanism for ORR through an unprecedented analysis of the electrolyte molecule using operando Raman, supported by simulations. |
doi_str_mv | 10.1002/smll.202306895 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038441957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086818717</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-a4fb7b7a3a235621bf0adc105e9daab24c4516be839113d8a3b68272c67bd073</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEEmNw5RyJC5eNfLRpe4QxYFLRJNg9SluXZUo_SLpNvfET-I38ElIN7cDJ9uvHlv0idE3JlBLC7lxlzJQRxomIk_AEjaigfCJilpwec0rO0YVzG0I4ZUE0QvZRW8g7PN_pAuoccFPiN9iBdTozgGdrVX-Aw7rGc-M525i-A6zqAuvO4UXdgW2N6vFed2uc6iU7aBUUWnnQz6X65-vb6w-q8w0N7hKdlco4uPqLY7R6mq9mL5N0-byY3aeTlgkRTlRQZlEWKa4YDwWjWUlUkVMSQlIolbEgD0IqMoh5QikvYsUz_2vEchFlBYn4GN0e1ra2-dyC62SlXQ7GqBqarZOc8DgIaBIO6M0_dNNsbe2P81TsXYsjOlDJgdprA71sra6U7SUlcrBfDvbLo_3y_TVNjxX_Bff_fE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086818717</pqid></control><display><type>article</type><title>Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries</title><source>Wiley</source><creator>Sousa, Bianca P. ; Lourenço, Tuanan C. ; Anchieta, Chayene G. ; Nepel, Thayane C. M. ; Filho, Rubens M. ; Da Silva, Juarez L. F. ; Doubek, Gustavo</creator><creatorcontrib>Sousa, Bianca P. ; Lourenço, Tuanan C. ; Anchieta, Chayene G. ; Nepel, Thayane C. M. ; Filho, Rubens M. ; Da Silva, Juarez L. F. ; Doubek, Gustavo</creatorcontrib><description>Lithium‐oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li‐O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO‐Li+‐anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactive O2−${\rm O}_2^{-}$. On charging, the presence of Li+ indicates the formation of a lithium‐deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li‐O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li‐O2 system.
Experiments and calculations allowed a detailed explanation of the discharge/charge mechanisms of a Li‐O2 cell using a carbon electrode and high‐DN solvent. It revealed a dynamic reversible change in the DMSO molecule resulting from interaction of LiO2–(solvent)n, thereby confirming the solution mechanism for ORR through an unprecedented analysis of the electrolyte molecule using operando Raman, supported by simulations.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202306895</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Band theory ; Carbon ; Cathodes ; Cathodic polarization ; Chemical reactions ; Decomposition reactions ; Density functional theory ; Dimethyl sulfoxide ; Discharge ; Electrolytes ; Energy storage ; Lithium ; lithium‐oxygen battery ; Molecular dynamics ; operando raman ; Oxygen</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2306895-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9349-4801 ; 0000-0001-6073-1540 ; 0000-0002-0003-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Sousa, Bianca P.</creatorcontrib><creatorcontrib>Lourenço, Tuanan C.</creatorcontrib><creatorcontrib>Anchieta, Chayene G.</creatorcontrib><creatorcontrib>Nepel, Thayane C. M.</creatorcontrib><creatorcontrib>Filho, Rubens M.</creatorcontrib><creatorcontrib>Da Silva, Juarez L. F.</creatorcontrib><creatorcontrib>Doubek, Gustavo</creatorcontrib><title>Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Lithium‐oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li‐O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO‐Li+‐anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactive O2−${\rm O}_2^{-}$. On charging, the presence of Li+ indicates the formation of a lithium‐deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li‐O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li‐O2 system.
Experiments and calculations allowed a detailed explanation of the discharge/charge mechanisms of a Li‐O2 cell using a carbon electrode and high‐DN solvent. It revealed a dynamic reversible change in the DMSO molecule resulting from interaction of LiO2–(solvent)n, thereby confirming the solution mechanism for ORR through an unprecedented analysis of the electrolyte molecule using operando Raman, supported by simulations.</description><subject>Band theory</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Chemical reactions</subject><subject>Decomposition reactions</subject><subject>Density functional theory</subject><subject>Dimethyl sulfoxide</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Lithium</subject><subject>lithium‐oxygen battery</subject><subject>Molecular dynamics</subject><subject>operando raman</subject><subject>Oxygen</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEEmNw5RyJC5eNfLRpe4QxYFLRJNg9SluXZUo_SLpNvfET-I38ElIN7cDJ9uvHlv0idE3JlBLC7lxlzJQRxomIk_AEjaigfCJilpwec0rO0YVzG0I4ZUE0QvZRW8g7PN_pAuoccFPiN9iBdTozgGdrVX-Aw7rGc-M525i-A6zqAuvO4UXdgW2N6vFed2uc6iU7aBUUWnnQz6X65-vb6w-q8w0N7hKdlco4uPqLY7R6mq9mL5N0-byY3aeTlgkRTlRQZlEWKa4YDwWjWUlUkVMSQlIolbEgD0IqMoh5QikvYsUz_2vEchFlBYn4GN0e1ra2-dyC62SlXQ7GqBqarZOc8DgIaBIO6M0_dNNsbe2P81TsXYsjOlDJgdprA71sra6U7SUlcrBfDvbLo_3y_TVNjxX_Bff_fE0</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sousa, Bianca P.</creator><creator>Lourenço, Tuanan C.</creator><creator>Anchieta, Chayene G.</creator><creator>Nepel, Thayane C. M.</creator><creator>Filho, Rubens M.</creator><creator>Da Silva, Juarez L. F.</creator><creator>Doubek, Gustavo</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9349-4801</orcidid><orcidid>https://orcid.org/0000-0001-6073-1540</orcidid><orcidid>https://orcid.org/0000-0002-0003-4337</orcidid></search><sort><creationdate>20240801</creationdate><title>Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries</title><author>Sousa, Bianca P. ; Lourenço, Tuanan C. ; Anchieta, Chayene G. ; Nepel, Thayane C. M. ; Filho, Rubens M. ; Da Silva, Juarez L. F. ; Doubek, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-a4fb7b7a3a235621bf0adc105e9daab24c4516be839113d8a3b68272c67bd073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band theory</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Chemical reactions</topic><topic>Decomposition reactions</topic><topic>Density functional theory</topic><topic>Dimethyl sulfoxide</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Lithium</topic><topic>lithium‐oxygen battery</topic><topic>Molecular dynamics</topic><topic>operando raman</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Bianca P.</creatorcontrib><creatorcontrib>Lourenço, Tuanan C.</creatorcontrib><creatorcontrib>Anchieta, Chayene G.</creatorcontrib><creatorcontrib>Nepel, Thayane C. M.</creatorcontrib><creatorcontrib>Filho, Rubens M.</creatorcontrib><creatorcontrib>Da Silva, Juarez L. F.</creatorcontrib><creatorcontrib>Doubek, Gustavo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, Bianca P.</au><au>Lourenço, Tuanan C.</au><au>Anchieta, Chayene G.</au><au>Nepel, Thayane C. M.</au><au>Filho, Rubens M.</au><au>Da Silva, Juarez L. F.</au><au>Doubek, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>31</issue><spage>e2306895</spage><epage>n/a</epage><pages>e2306895-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Lithium‐oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li‐O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO‐Li+‐anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactive O2−${\rm O}_2^{-}$. On charging, the presence of Li+ indicates the formation of a lithium‐deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li‐O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li‐O2 system.
Experiments and calculations allowed a detailed explanation of the discharge/charge mechanisms of a Li‐O2 cell using a carbon electrode and high‐DN solvent. It revealed a dynamic reversible change in the DMSO molecule resulting from interaction of LiO2–(solvent)n, thereby confirming the solution mechanism for ORR through an unprecedented analysis of the electrolyte molecule using operando Raman, supported by simulations.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202306895</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9349-4801</orcidid><orcidid>https://orcid.org/0000-0001-6073-1540</orcidid><orcidid>https://orcid.org/0000-0002-0003-4337</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2306895-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3038441957 |
source | Wiley |
subjects | Band theory Carbon Cathodes Cathodic polarization Chemical reactions Decomposition reactions Density functional theory Dimethyl sulfoxide Discharge Electrolytes Energy storage Lithium lithium‐oxygen battery Molecular dynamics operando raman Oxygen |
title | Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li‐O2 Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T07%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Evidence%20of%20Reversible%20Changes%20in%20Electrolyte%20and%20its%20Interplay%20with%20LiO2%20Intermediate%20in%20Li%E2%80%90O2%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sousa,%20Bianca%20P.&rft.date=2024-08-01&rft.volume=20&rft.issue=31&rft.spage=e2306895&rft.epage=n/a&rft.pages=e2306895-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202306895&rft_dat=%3Cproquest_wiley%3E3086818717%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2665-a4fb7b7a3a235621bf0adc105e9daab24c4516be839113d8a3b68272c67bd073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086818717&rft_id=info:pmid/&rfr_iscdi=true |