Loading…

Exploring structure–property landscape of non-fullerene acceptors for organic solar cells

We present a comprehensive analysis of the structure–property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor–donor–acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halog...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-04, Vol.160 (14)
Main Authors: Patel, Khantil, Khatua, Rudranarayan, Patrikar, Kalyani, Mondal, Anirban
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-23edeb0f25636c96eaf8a689b22c3af80503856bf527942422b24adfc07612f43
container_end_page
container_issue 14
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Patel, Khantil
Khatua, Rudranarayan
Patrikar, Kalyani
Mondal, Anirban
description We present a comprehensive analysis of the structure–property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor–donor–acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and ΔLUMO less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure–property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.
doi_str_mv 10.1063/5.0191650
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3038441679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037653989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-23edeb0f25636c96eaf8a689b22c3af80503856bf527942422b24adfc07612f43</originalsourceid><addsrcrecordid>eNp90E1LwzAcBvAgipsvB7-ABLyo0PnPS9PmKGO-wMCLnjyUNEtGR5fUpAV38zv4Df0ktmx68OApIfzy8PAgdEZgQkCwm3QCRBKRwh4aE8hlkgkJ-2gMQEkiBYgROopxBQAko_wQjVjeP2YsH6PX2XtT-1C5JY5t6HTbBfP18dkE35jQbnCt3CJq1RjsLXbeJbaraxOMM1hpbZrWh4itD9iHpXKVxtHXKmBt6jqeoAOr6mhOd-cxermbPU8fkvnT_eP0dp5oxlmbUGYWpgRLU8GElsIomyuRy5JSzfo7pMDyVJQ2pZnklFNaUq4WVkMmCLWcHaPLbW7f-q0zsS3WVRwaKGd8FwvW_-eciEz29OIPXfkuuL7doDKRMpkP6mqrdPAxBmOLJlRrFTYFgWJYvEiL3eK9Pd8lduXaLH7lz8Q9uN6CqKtWtZV3_6R9A3s1iS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037653989</pqid></control><display><type>article</type><title>Exploring structure–property landscape of non-fullerene acceptors for organic solar cells</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Patel, Khantil ; Khatua, Rudranarayan ; Patrikar, Kalyani ; Mondal, Anirban</creator><creatorcontrib>Patel, Khantil ; Khatua, Rudranarayan ; Patrikar, Kalyani ; Mondal, Anirban</creatorcontrib><description>We present a comprehensive analysis of the structure–property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor–donor–acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and ΔLUMO less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure–property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0191650</identifier><identifier>PMID: 38606738</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge transport ; Design optimization ; Excitons ; Fullerenes ; Molecular dynamics ; Molecular structure ; Photovoltaic cells ; Quantum chemistry ; Solar cells ; Transport properties</subject><ispartof>The Journal of chemical physics, 2024-04, Vol.160 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-23edeb0f25636c96eaf8a689b22c3af80503856bf527942422b24adfc07612f43</cites><orcidid>0000-0003-2709-3377 ; 0000-0003-3029-8840 ; 0000-0002-8793-699X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0191650$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,786,788,790,801,27957,27958,76741</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38606738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Khantil</creatorcontrib><creatorcontrib>Khatua, Rudranarayan</creatorcontrib><creatorcontrib>Patrikar, Kalyani</creatorcontrib><creatorcontrib>Mondal, Anirban</creatorcontrib><title>Exploring structure–property landscape of non-fullerene acceptors for organic solar cells</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present a comprehensive analysis of the structure–property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor–donor–acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and ΔLUMO less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure–property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.</description><subject>Charge transport</subject><subject>Design optimization</subject><subject>Excitons</subject><subject>Fullerenes</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Photovoltaic cells</subject><subject>Quantum chemistry</subject><subject>Solar cells</subject><subject>Transport properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcBvAgipsvB7-ABLyo0PnPS9PmKGO-wMCLnjyUNEtGR5fUpAV38zv4Df0ktmx68OApIfzy8PAgdEZgQkCwm3QCRBKRwh4aE8hlkgkJ-2gMQEkiBYgROopxBQAko_wQjVjeP2YsH6PX2XtT-1C5JY5t6HTbBfP18dkE35jQbnCt3CJq1RjsLXbeJbaraxOMM1hpbZrWh4itD9iHpXKVxtHXKmBt6jqeoAOr6mhOd-cxermbPU8fkvnT_eP0dp5oxlmbUGYWpgRLU8GElsIomyuRy5JSzfo7pMDyVJQ2pZnklFNaUq4WVkMmCLWcHaPLbW7f-q0zsS3WVRwaKGd8FwvW_-eciEz29OIPXfkuuL7doDKRMpkP6mqrdPAxBmOLJlRrFTYFgWJYvEiL3eK9Pd8lduXaLH7lz8Q9uN6CqKtWtZV3_6R9A3s1iS0</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Patel, Khantil</creator><creator>Khatua, Rudranarayan</creator><creator>Patrikar, Kalyani</creator><creator>Mondal, Anirban</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2709-3377</orcidid><orcidid>https://orcid.org/0000-0003-3029-8840</orcidid><orcidid>https://orcid.org/0000-0002-8793-699X</orcidid></search><sort><creationdate>20240414</creationdate><title>Exploring structure–property landscape of non-fullerene acceptors for organic solar cells</title><author>Patel, Khantil ; Khatua, Rudranarayan ; Patrikar, Kalyani ; Mondal, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-23edeb0f25636c96eaf8a689b22c3af80503856bf527942422b24adfc07612f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transport</topic><topic>Design optimization</topic><topic>Excitons</topic><topic>Fullerenes</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Photovoltaic cells</topic><topic>Quantum chemistry</topic><topic>Solar cells</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Khantil</creatorcontrib><creatorcontrib>Khatua, Rudranarayan</creatorcontrib><creatorcontrib>Patrikar, Kalyani</creatorcontrib><creatorcontrib>Mondal, Anirban</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Khantil</au><au>Khatua, Rudranarayan</au><au>Patrikar, Kalyani</au><au>Mondal, Anirban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring structure–property landscape of non-fullerene acceptors for organic solar cells</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-04-14</date><risdate>2024</risdate><volume>160</volume><issue>14</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>We present a comprehensive analysis of the structure–property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor–donor–acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and ΔLUMO less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure–property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38606738</pmid><doi>10.1063/5.0191650</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2709-3377</orcidid><orcidid>https://orcid.org/0000-0003-3029-8840</orcidid><orcidid>https://orcid.org/0000-0002-8793-699X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-04, Vol.160 (14)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_3038441679
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Charge transport
Design optimization
Excitons
Fullerenes
Molecular dynamics
Molecular structure
Photovoltaic cells
Quantum chemistry
Solar cells
Transport properties
title Exploring structure–property landscape of non-fullerene acceptors for organic solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20structure%E2%80%93property%20landscape%20of%20non-fullerene%20acceptors%20for%20organic%20solar%20cells&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Patel,%20Khantil&rft.date=2024-04-14&rft.volume=160&rft.issue=14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0191650&rft_dat=%3Cproquest_cross%3E3037653989%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-23edeb0f25636c96eaf8a689b22c3af80503856bf527942422b24adfc07612f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037653989&rft_id=info:pmid/38606738&rfr_iscdi=true