Loading…

Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection

The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge....

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (33), p.e2312120-n/a
Main Authors: Jeon, Hye Yoon, Song, Da Som, Shin, RoSa, Kwon, Yeong Min, Jo, Hyeong‐ku, Lee, Do Hyung, Lee, Eunji, Jang, Moonjeong, So, Hee‐Soo, Kang, Saewon, Yim, Soonmin, Myung, Sung, Lee, Sun Sook, Yoon, Dae Ho, Kim, Chang Gyoun, Lim, Jongsun, Song, Wooseok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3
container_end_page n/a
container_issue 33
container_start_page e2312120
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Jeon, Hye Yoon
Song, Da Som
Shin, RoSa
Kwon, Yeong Min
Jo, Hyeong‐ku
Lee, Do Hyung
Lee, Eunji
Jang, Moonjeong
So, Hee‐Soo
Kang, Saewon
Yim, Soonmin
Myung, Sung
Lee, Sun Sook
Yoon, Dae Ho
Kim, Chang Gyoun
Lim, Jongsun
Song, Wooseok
description The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection. Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.
doi_str_mv 10.1002/smll.202312120
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031133223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031133223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</originalsourceid><addsrcrecordid>eNqFkc1OGzEUhS0EKhC67bKy1E03Cf7JeDzLKCk0UkIrAnQ5cjzXxZFnHOwZoez6CH3GPgkOgSB1w8p38Z1P1jkIfaJkQAlh57F2bsAI45RRRg7QCRWU94VkxeH-puQYnca4IiRRw_wDOuYyy2TG5AkKv5SB8O_P34VWDvCo9bXVeBQj1Eu3wcYHzCZ43rnWNips8E1QTbSt9Q2eQ6scnlh9r5z2v6GxFcTnxJ2Ndplsqqnw1fQa_7z3ra-gBb0NnqEjo1yEjy9vD91efLsZf-_PflxOx6NZX3MhSb8YMlEJbXKQ0uRKgyZDIo3OmNJGVkblKpOGc2DZUIHOi1zIPFMVYcCYEMB76OvOuw7-oYPYlrWNGpxTDfguljzVQTlnjCf0y3_oynehSb9LVJGYXIosUYMdpYOPMYAp18HWqZWSknK7Rrldo9yvkQKfX7TdsoZqj7_Wn4BiBzxaB5t3dOViPpu9yZ8AhN-Xvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093327865</pqid></control><display><type>article</type><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</creator><creatorcontrib>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</creatorcontrib><description>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection. Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202312120</identifier><identifier>PMID: 38558528</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Broadband ; Chalcogenides ; large‐area synthesis ; Molybdenum disulfide ; Near infrared radiation ; optoelectronic properties ; Optoelectronics ; photodetection ; Photoelectricity ; Thermal decomposition ; Transition metal compounds ; transition metal dichalcogenides ; wafer‐scale assembly</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (33), p.e2312120-n/a</ispartof><rights>2024 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</cites><orcidid>0000-0002-0487-2055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38558528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Hye Yoon</creatorcontrib><creatorcontrib>Song, Da Som</creatorcontrib><creatorcontrib>Shin, RoSa</creatorcontrib><creatorcontrib>Kwon, Yeong Min</creatorcontrib><creatorcontrib>Jo, Hyeong‐ku</creatorcontrib><creatorcontrib>Lee, Do Hyung</creatorcontrib><creatorcontrib>Lee, Eunji</creatorcontrib><creatorcontrib>Jang, Moonjeong</creatorcontrib><creatorcontrib>So, Hee‐Soo</creatorcontrib><creatorcontrib>Kang, Saewon</creatorcontrib><creatorcontrib>Yim, Soonmin</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Yoon, Dae Ho</creatorcontrib><creatorcontrib>Kim, Chang Gyoun</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection. Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</description><subject>Assembly</subject><subject>Broadband</subject><subject>Chalcogenides</subject><subject>large‐area synthesis</subject><subject>Molybdenum disulfide</subject><subject>Near infrared radiation</subject><subject>optoelectronic properties</subject><subject>Optoelectronics</subject><subject>photodetection</subject><subject>Photoelectricity</subject><subject>Thermal decomposition</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>wafer‐scale assembly</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1OGzEUhS0EKhC67bKy1E03Cf7JeDzLKCk0UkIrAnQ5cjzXxZFnHOwZoez6CH3GPgkOgSB1w8p38Z1P1jkIfaJkQAlh57F2bsAI45RRRg7QCRWU94VkxeH-puQYnca4IiRRw_wDOuYyy2TG5AkKv5SB8O_P34VWDvCo9bXVeBQj1Eu3wcYHzCZ43rnWNips8E1QTbSt9Q2eQ6scnlh9r5z2v6GxFcTnxJ2Ndplsqqnw1fQa_7z3ra-gBb0NnqEjo1yEjy9vD91efLsZf-_PflxOx6NZX3MhSb8YMlEJbXKQ0uRKgyZDIo3OmNJGVkblKpOGc2DZUIHOi1zIPFMVYcCYEMB76OvOuw7-oYPYlrWNGpxTDfguljzVQTlnjCf0y3_oynehSb9LVJGYXIosUYMdpYOPMYAp18HWqZWSknK7Rrldo9yvkQKfX7TdsoZqj7_Wn4BiBzxaB5t3dOViPpu9yZ8AhN-Xvg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jeon, Hye Yoon</creator><creator>Song, Da Som</creator><creator>Shin, RoSa</creator><creator>Kwon, Yeong Min</creator><creator>Jo, Hyeong‐ku</creator><creator>Lee, Do Hyung</creator><creator>Lee, Eunji</creator><creator>Jang, Moonjeong</creator><creator>So, Hee‐Soo</creator><creator>Kang, Saewon</creator><creator>Yim, Soonmin</creator><creator>Myung, Sung</creator><creator>Lee, Sun Sook</creator><creator>Yoon, Dae Ho</creator><creator>Kim, Chang Gyoun</creator><creator>Lim, Jongsun</creator><creator>Song, Wooseok</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0487-2055</orcidid></search><sort><creationdate>20240801</creationdate><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><author>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Broadband</topic><topic>Chalcogenides</topic><topic>large‐area synthesis</topic><topic>Molybdenum disulfide</topic><topic>Near infrared radiation</topic><topic>optoelectronic properties</topic><topic>Optoelectronics</topic><topic>photodetection</topic><topic>Photoelectricity</topic><topic>Thermal decomposition</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>wafer‐scale assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Hye Yoon</creatorcontrib><creatorcontrib>Song, Da Som</creatorcontrib><creatorcontrib>Shin, RoSa</creatorcontrib><creatorcontrib>Kwon, Yeong Min</creatorcontrib><creatorcontrib>Jo, Hyeong‐ku</creatorcontrib><creatorcontrib>Lee, Do Hyung</creatorcontrib><creatorcontrib>Lee, Eunji</creatorcontrib><creatorcontrib>Jang, Moonjeong</creatorcontrib><creatorcontrib>So, Hee‐Soo</creatorcontrib><creatorcontrib>Kang, Saewon</creatorcontrib><creatorcontrib>Yim, Soonmin</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Yoon, Dae Ho</creatorcontrib><creatorcontrib>Kim, Chang Gyoun</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Hye Yoon</au><au>Song, Da Som</au><au>Shin, RoSa</au><au>Kwon, Yeong Min</au><au>Jo, Hyeong‐ku</au><au>Lee, Do Hyung</au><au>Lee, Eunji</au><au>Jang, Moonjeong</au><au>So, Hee‐Soo</au><au>Kang, Saewon</au><au>Yim, Soonmin</au><au>Myung, Sung</au><au>Lee, Sun Sook</au><au>Yoon, Dae Ho</au><au>Kim, Chang Gyoun</au><au>Lim, Jongsun</au><au>Song, Wooseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>33</issue><spage>e2312120</spage><epage>n/a</epage><pages>e2312120-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection. Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38558528</pmid><doi>10.1002/smll.202312120</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0487-2055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (33), p.e2312120-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3031133223
source Wiley-Blackwell Read & Publish Collection
subjects Assembly
Broadband
Chalcogenides
large‐area synthesis
Molybdenum disulfide
Near infrared radiation
optoelectronic properties
Optoelectronics
photodetection
Photoelectricity
Thermal decomposition
Transition metal compounds
transition metal dichalcogenides
wafer‐scale assembly
title Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T05%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer%E2%80%90Scale%20Atomic%20Assembly%20for%202D%20Multinary%20Transition%20Metal%20Dichalcogenides%20for%20Visible%20and%20NIR%20Photodetection&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jeon,%20Hye%20Yoon&rft.date=2024-08-01&rft.volume=20&rft.issue=33&rft.spage=e2312120&rft.epage=n/a&rft.pages=e2312120-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202312120&rft_dat=%3Cproquest_cross%3E3031133223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093327865&rft_id=info:pmid/38558528&rfr_iscdi=true