Loading…
Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection
The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge....
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (33), p.e2312120-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3 |
container_end_page | n/a |
container_issue | 33 |
container_start_page | e2312120 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Jeon, Hye Yoon Song, Da Som Shin, RoSa Kwon, Yeong Min Jo, Hyeong‐ku Lee, Do Hyung Lee, Eunji Jang, Moonjeong So, Hee‐Soo Kang, Saewon Yim, Soonmin Myung, Sung Lee, Sun Sook Yoon, Dae Ho Kim, Chang Gyoun Lim, Jongsun Song, Wooseok |
description | The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection.
Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection. |
doi_str_mv | 10.1002/smll.202312120 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3031133223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031133223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</originalsourceid><addsrcrecordid>eNqFkc1OGzEUhS0EKhC67bKy1E03Cf7JeDzLKCk0UkIrAnQ5cjzXxZFnHOwZoez6CH3GPgkOgSB1w8p38Z1P1jkIfaJkQAlh57F2bsAI45RRRg7QCRWU94VkxeH-puQYnca4IiRRw_wDOuYyy2TG5AkKv5SB8O_P34VWDvCo9bXVeBQj1Eu3wcYHzCZ43rnWNips8E1QTbSt9Q2eQ6scnlh9r5z2v6GxFcTnxJ2Ndplsqqnw1fQa_7z3ra-gBb0NnqEjo1yEjy9vD91efLsZf-_PflxOx6NZX3MhSb8YMlEJbXKQ0uRKgyZDIo3OmNJGVkblKpOGc2DZUIHOi1zIPFMVYcCYEMB76OvOuw7-oYPYlrWNGpxTDfguljzVQTlnjCf0y3_oynehSb9LVJGYXIosUYMdpYOPMYAp18HWqZWSknK7Rrldo9yvkQKfX7TdsoZqj7_Wn4BiBzxaB5t3dOViPpu9yZ8AhN-Xvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093327865</pqid></control><display><type>article</type><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</creator><creatorcontrib>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</creatorcontrib><description>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection.
Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202312120</identifier><identifier>PMID: 38558528</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Broadband ; Chalcogenides ; large‐area synthesis ; Molybdenum disulfide ; Near infrared radiation ; optoelectronic properties ; Optoelectronics ; photodetection ; Photoelectricity ; Thermal decomposition ; Transition metal compounds ; transition metal dichalcogenides ; wafer‐scale assembly</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (33), p.e2312120-n/a</ispartof><rights>2024 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</cites><orcidid>0000-0002-0487-2055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38558528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Hye Yoon</creatorcontrib><creatorcontrib>Song, Da Som</creatorcontrib><creatorcontrib>Shin, RoSa</creatorcontrib><creatorcontrib>Kwon, Yeong Min</creatorcontrib><creatorcontrib>Jo, Hyeong‐ku</creatorcontrib><creatorcontrib>Lee, Do Hyung</creatorcontrib><creatorcontrib>Lee, Eunji</creatorcontrib><creatorcontrib>Jang, Moonjeong</creatorcontrib><creatorcontrib>So, Hee‐Soo</creatorcontrib><creatorcontrib>Kang, Saewon</creatorcontrib><creatorcontrib>Yim, Soonmin</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Yoon, Dae Ho</creatorcontrib><creatorcontrib>Kim, Chang Gyoun</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection.
Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</description><subject>Assembly</subject><subject>Broadband</subject><subject>Chalcogenides</subject><subject>large‐area synthesis</subject><subject>Molybdenum disulfide</subject><subject>Near infrared radiation</subject><subject>optoelectronic properties</subject><subject>Optoelectronics</subject><subject>photodetection</subject><subject>Photoelectricity</subject><subject>Thermal decomposition</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>wafer‐scale assembly</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1OGzEUhS0EKhC67bKy1E03Cf7JeDzLKCk0UkIrAnQ5cjzXxZFnHOwZoez6CH3GPgkOgSB1w8p38Z1P1jkIfaJkQAlh57F2bsAI45RRRg7QCRWU94VkxeH-puQYnca4IiRRw_wDOuYyy2TG5AkKv5SB8O_P34VWDvCo9bXVeBQj1Eu3wcYHzCZ43rnWNips8E1QTbSt9Q2eQ6scnlh9r5z2v6GxFcTnxJ2Ndplsqqnw1fQa_7z3ra-gBb0NnqEjo1yEjy9vD91efLsZf-_PflxOx6NZX3MhSb8YMlEJbXKQ0uRKgyZDIo3OmNJGVkblKpOGc2DZUIHOi1zIPFMVYcCYEMB76OvOuw7-oYPYlrWNGpxTDfguljzVQTlnjCf0y3_oynehSb9LVJGYXIosUYMdpYOPMYAp18HWqZWSknK7Rrldo9yvkQKfX7TdsoZqj7_Wn4BiBzxaB5t3dOViPpu9yZ8AhN-Xvg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jeon, Hye Yoon</creator><creator>Song, Da Som</creator><creator>Shin, RoSa</creator><creator>Kwon, Yeong Min</creator><creator>Jo, Hyeong‐ku</creator><creator>Lee, Do Hyung</creator><creator>Lee, Eunji</creator><creator>Jang, Moonjeong</creator><creator>So, Hee‐Soo</creator><creator>Kang, Saewon</creator><creator>Yim, Soonmin</creator><creator>Myung, Sung</creator><creator>Lee, Sun Sook</creator><creator>Yoon, Dae Ho</creator><creator>Kim, Chang Gyoun</creator><creator>Lim, Jongsun</creator><creator>Song, Wooseok</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0487-2055</orcidid></search><sort><creationdate>20240801</creationdate><title>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</title><author>Jeon, Hye Yoon ; Song, Da Som ; Shin, RoSa ; Kwon, Yeong Min ; Jo, Hyeong‐ku ; Lee, Do Hyung ; Lee, Eunji ; Jang, Moonjeong ; So, Hee‐Soo ; Kang, Saewon ; Yim, Soonmin ; Myung, Sung ; Lee, Sun Sook ; Yoon, Dae Ho ; Kim, Chang Gyoun ; Lim, Jongsun ; Song, Wooseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assembly</topic><topic>Broadband</topic><topic>Chalcogenides</topic><topic>large‐area synthesis</topic><topic>Molybdenum disulfide</topic><topic>Near infrared radiation</topic><topic>optoelectronic properties</topic><topic>Optoelectronics</topic><topic>photodetection</topic><topic>Photoelectricity</topic><topic>Thermal decomposition</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>wafer‐scale assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Hye Yoon</creatorcontrib><creatorcontrib>Song, Da Som</creatorcontrib><creatorcontrib>Shin, RoSa</creatorcontrib><creatorcontrib>Kwon, Yeong Min</creatorcontrib><creatorcontrib>Jo, Hyeong‐ku</creatorcontrib><creatorcontrib>Lee, Do Hyung</creatorcontrib><creatorcontrib>Lee, Eunji</creatorcontrib><creatorcontrib>Jang, Moonjeong</creatorcontrib><creatorcontrib>So, Hee‐Soo</creatorcontrib><creatorcontrib>Kang, Saewon</creatorcontrib><creatorcontrib>Yim, Soonmin</creatorcontrib><creatorcontrib>Myung, Sung</creatorcontrib><creatorcontrib>Lee, Sun Sook</creatorcontrib><creatorcontrib>Yoon, Dae Ho</creatorcontrib><creatorcontrib>Kim, Chang Gyoun</creatorcontrib><creatorcontrib>Lim, Jongsun</creatorcontrib><creatorcontrib>Song, Wooseok</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Hye Yoon</au><au>Song, Da Som</au><au>Shin, RoSa</au><au>Kwon, Yeong Min</au><au>Jo, Hyeong‐ku</au><au>Lee, Do Hyung</au><au>Lee, Eunji</au><au>Jang, Moonjeong</au><au>So, Hee‐Soo</au><au>Kang, Saewon</au><au>Yim, Soonmin</au><au>Myung, Sung</au><au>Lee, Sun Sook</au><au>Yoon, Dae Ho</au><au>Kim, Chang Gyoun</au><au>Lim, Jongsun</au><au>Song, Wooseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>33</issue><spage>e2312120</spage><epage>n/a</epage><pages>e2312120-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The tunable properties of 2D transition‐metal dichalcogenide (TMDs) materials are extensively investigated for high‐performance and wavelength‐tunable optoelectronic applications. However, the precise modification of large‐scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer‐scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large‐area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single‐source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetectors is 3.51 × 10−4, 1.48, and 0.9 A W−1 for 532 nm and 0.063, 0.42, and 1.4 A W−1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared (NIR) photodetection.
Wafer‐scale atomic assembly method to produce 2D multinary (binary, ternary, and quaternary) semiconductors for broadband photodetection is accomplished using a succinct coating of the single‐precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The MoS2‐, Ni0.06Mo0.26S0.68‐, and Ni0.1Mo0.9S1.79Se0.21‐based photodetector exhibit excellent photoelectrical properties, which is highly beneficial for visible and near‐infrared photodetection.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38558528</pmid><doi>10.1002/smll.202312120</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0487-2055</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (33), p.e2312120-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3031133223 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Assembly Broadband Chalcogenides large‐area synthesis Molybdenum disulfide Near infrared radiation optoelectronic properties Optoelectronics photodetection Photoelectricity Thermal decomposition Transition metal compounds transition metal dichalcogenides wafer‐scale assembly |
title | Wafer‐Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T05%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer%E2%80%90Scale%20Atomic%20Assembly%20for%202D%20Multinary%20Transition%20Metal%20Dichalcogenides%20for%20Visible%20and%20NIR%20Photodetection&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jeon,%20Hye%20Yoon&rft.date=2024-08-01&rft.volume=20&rft.issue=33&rft.spage=e2312120&rft.epage=n/a&rft.pages=e2312120-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202312120&rft_dat=%3Cproquest_cross%3E3031133223%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3680-9426d6cf7e88f7acec0408fc52acf8dfa7a58f33e254aec7976875ad02e2266e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093327865&rft_id=info:pmid/38558528&rfr_iscdi=true |