Loading…

A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation

In order to predict ground deformations due to the dissociation of methane hydrates, we have developed a simulation method based on a chemo-thermo-mechanically coupled analysis. Within this method, the phase change from hydrates to fluids, the flow of pore water and gas, the mechanical behavior of t...

Full description

Saved in:
Bibliographic Details
Published in:Computers and geotechnics 2007-07, Vol.34 (4), p.216-228
Main Authors: Kimoto, Sayuri, Oka, Fusao, Fushita, Tomohiko, Fujiwaki, Masaya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3
cites cdi_FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3
container_end_page 228
container_issue 4
container_start_page 216
container_title Computers and geotechnics
container_volume 34
creator Kimoto, Sayuri
Oka, Fusao
Fushita, Tomohiko
Fujiwaki, Masaya
description In order to predict ground deformations due to the dissociation of methane hydrates, we have developed a simulation method based on a chemo-thermo-mechanically coupled analysis. Within this method, the phase change from hydrates to fluids, the flow of pore water and gas, the mechanical behavior of the solid skeleton, and heat transfer can all be simultaneously solved. The numerical method is based on the finite element method using an updated Lagrangian formulation. Applying the proposed framework, we have numerically analyzed the dissociation process that occurs in the heating and depressurizing methods of natural gas production. It has been predicted that ground deformation is caused by the generation of water and gas during the dissociation process.
doi_str_mv 10.1016/j.compgeo.2007.02.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30087572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266352X07000195</els_id><sourcerecordid>30087572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpIds0PyGgU292x9Zakk8lhDYtBHppoTehHY2zWixrK1mFvfaXR5vNvacHw_vezDzGbjtoO-jkp0OLMRyfKLY9gGqhbwHkG7bptBKNkkK8ZRvopWzE0P--Yu9zPkDlRj1u2L87jnsKsVn3lKoEwr1dPNp5PnGM5TiT40sJlM4znn0os119XHiceGV4Lrtc0mSR-FOKZXHc0RRTeDFl7grxNfJAa40lvj-5ZFfizucc0b-YPrB3k50z3bzqNfv19cvP-2_N44-H7_d3jw1uQa7NODk1KCuJ7KBBW5R62kLnxDjY3aQ7pwDHUauelN4N4xaVIgEkpOg7rdGJa_bxkntM8U-hvJrgM9I818NiyUYA6Lqhr8bhYsQUc040mWPywaaT6cCcGzcH89q4OTduoDe18cp9vnBUv_jrKZmMnhYk5xPhalz0_0l4Bki3kGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30087572</pqid></control><display><type>article</type><title>A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation</title><source>ScienceDirect Freedom Collection</source><creator>Kimoto, Sayuri ; Oka, Fusao ; Fushita, Tomohiko ; Fujiwaki, Masaya</creator><creatorcontrib>Kimoto, Sayuri ; Oka, Fusao ; Fushita, Tomohiko ; Fujiwaki, Masaya</creatorcontrib><description>In order to predict ground deformations due to the dissociation of methane hydrates, we have developed a simulation method based on a chemo-thermo-mechanically coupled analysis. Within this method, the phase change from hydrates to fluids, the flow of pore water and gas, the mechanical behavior of the solid skeleton, and heat transfer can all be simultaneously solved. The numerical method is based on the finite element method using an updated Lagrangian formulation. Applying the proposed framework, we have numerically analyzed the dissociation process that occurs in the heating and depressurizing methods of natural gas production. It has been predicted that ground deformation is caused by the generation of water and gas during the dissociation process.</description><identifier>ISSN: 0266-352X</identifier><identifier>EISSN: 1873-7633</identifier><identifier>DOI: 10.1016/j.compgeo.2007.02.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Dissociation ; Elasto-viscoplastic model ; Heat ; Phase change ; Unsaturated soil</subject><ispartof>Computers and geotechnics, 2007-07, Vol.34 (4), p.216-228</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3</citedby><cites>FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Kimoto, Sayuri</creatorcontrib><creatorcontrib>Oka, Fusao</creatorcontrib><creatorcontrib>Fushita, Tomohiko</creatorcontrib><creatorcontrib>Fujiwaki, Masaya</creatorcontrib><title>A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation</title><title>Computers and geotechnics</title><description>In order to predict ground deformations due to the dissociation of methane hydrates, we have developed a simulation method based on a chemo-thermo-mechanically coupled analysis. Within this method, the phase change from hydrates to fluids, the flow of pore water and gas, the mechanical behavior of the solid skeleton, and heat transfer can all be simultaneously solved. The numerical method is based on the finite element method using an updated Lagrangian formulation. Applying the proposed framework, we have numerically analyzed the dissociation process that occurs in the heating and depressurizing methods of natural gas production. It has been predicted that ground deformation is caused by the generation of water and gas during the dissociation process.</description><subject>Dissociation</subject><subject>Elasto-viscoplastic model</subject><subject>Heat</subject><subject>Phase change</subject><subject>Unsaturated soil</subject><issn>0266-352X</issn><issn>1873-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVpIds0PyGgU292x9Zakk8lhDYtBHppoTehHY2zWixrK1mFvfaXR5vNvacHw_vezDzGbjtoO-jkp0OLMRyfKLY9gGqhbwHkG7bptBKNkkK8ZRvopWzE0P--Yu9zPkDlRj1u2L87jnsKsVn3lKoEwr1dPNp5PnGM5TiT40sJlM4znn0os119XHiceGV4Lrtc0mSR-FOKZXHc0RRTeDFl7grxNfJAa40lvj-5ZFfizucc0b-YPrB3k50z3bzqNfv19cvP-2_N44-H7_d3jw1uQa7NODk1KCuJ7KBBW5R62kLnxDjY3aQ7pwDHUauelN4N4xaVIgEkpOg7rdGJa_bxkntM8U-hvJrgM9I818NiyUYA6Lqhr8bhYsQUc040mWPywaaT6cCcGzcH89q4OTduoDe18cp9vnBUv_jrKZmMnhYk5xPhalz0_0l4Bki3kGM</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Kimoto, Sayuri</creator><creator>Oka, Fusao</creator><creator>Fushita, Tomohiko</creator><creator>Fujiwaki, Masaya</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200707</creationdate><title>A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation</title><author>Kimoto, Sayuri ; Oka, Fusao ; Fushita, Tomohiko ; Fujiwaki, Masaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Dissociation</topic><topic>Elasto-viscoplastic model</topic><topic>Heat</topic><topic>Phase change</topic><topic>Unsaturated soil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimoto, Sayuri</creatorcontrib><creatorcontrib>Oka, Fusao</creatorcontrib><creatorcontrib>Fushita, Tomohiko</creatorcontrib><creatorcontrib>Fujiwaki, Masaya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and geotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimoto, Sayuri</au><au>Oka, Fusao</au><au>Fushita, Tomohiko</au><au>Fujiwaki, Masaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation</atitle><jtitle>Computers and geotechnics</jtitle><date>2007-07</date><risdate>2007</risdate><volume>34</volume><issue>4</issue><spage>216</spage><epage>228</epage><pages>216-228</pages><issn>0266-352X</issn><eissn>1873-7633</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>In order to predict ground deformations due to the dissociation of methane hydrates, we have developed a simulation method based on a chemo-thermo-mechanically coupled analysis. Within this method, the phase change from hydrates to fluids, the flow of pore water and gas, the mechanical behavior of the solid skeleton, and heat transfer can all be simultaneously solved. The numerical method is based on the finite element method using an updated Lagrangian formulation. Applying the proposed framework, we have numerically analyzed the dissociation process that occurs in the heating and depressurizing methods of natural gas production. It has been predicted that ground deformation is caused by the generation of water and gas during the dissociation process.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compgeo.2007.02.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-352X
ispartof Computers and geotechnics, 2007-07, Vol.34 (4), p.216-228
issn 0266-352X
1873-7633
language eng
recordid cdi_proquest_miscellaneous_30087572
source ScienceDirect Freedom Collection
subjects Dissociation
Elasto-viscoplastic model
Heat
Phase change
Unsaturated soil
title A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T14%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chemo-thermo-mechanically%20coupled%20numerical%20simulation%20of%20the%20subsurface%20ground%20deformations%20due%20to%20methane%20hydrate%20dissociation&rft.jtitle=Computers%20and%20geotechnics&rft.au=Kimoto,%20Sayuri&rft.date=2007-07&rft.volume=34&rft.issue=4&rft.spage=216&rft.epage=228&rft.pages=216-228&rft.issn=0266-352X&rft.eissn=1873-7633&rft_id=info:doi/10.1016/j.compgeo.2007.02.006&rft_dat=%3Cproquest_cross%3E30087572%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-9fd757a6eea5808ac68f401d395abf81d70c99872e78b594c77e30e3632188cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30087572&rft_id=info:pmid/&rfr_iscdi=true