Loading…

Electrodeposition of FeCoNi thin films for magnetic-MEMS devices

The physical properties, including macro and microstructures, film stress, and corrosion resistances, along with the magnetic properties of electrodeposited FeCoNi thin films, which can be later integrated to magnetic-MEMS devices were systematically investigated by varying film composition. Increas...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2006-09, Vol.51 (28), p.6346-6352
Main Authors: Yoo, B.Y., Hernandez, S.C., Park, D.-Y., Myung, N.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83
cites cdi_FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83
container_end_page 6352
container_issue 28
container_start_page 6346
container_title Electrochimica acta
container_volume 51
creator Yoo, B.Y.
Hernandez, S.C.
Park, D.-Y.
Myung, N.V.
description The physical properties, including macro and microstructures, film stress, and corrosion resistances, along with the magnetic properties of electrodeposited FeCoNi thin films, which can be later integrated to magnetic-MEMS devices were systematically investigated by varying film composition. Increased Ni content affected both macro and microstructure of electrodeposits, switching from columnar structure to lamellar structure and from body centered cubic (BCC) to face centered cubic (FCC), respectively. The film stress of electrodeposits was increased with increasing deposit Ni content and it was inversely proportional to grain size. The corrosion resistance of films determined by polarization resistance and pitting potential initially improved with increasing deposit nickel content, followed by a maximum at ∼48 at.% deposit Ni content. After reaching an upper limit, the corrosion resistance slightly decreased with increasing deposit Ni content. The coercivity of FeCoNi alloy decreased when Ni content increased from 0 at.% to ∼13 at.% which might be due to decrease in grain size. However, from ∼13 at.% to ∼48 at.%, coercivity increased, which could be predominately affected by changes in film stress and microstructure. Fe-rich FeCoNi thin films (e.g. 68Fe29Co 3Ni) show good magnetic properties with minimum film stress for magnetic-MEMS actuated in the out-of-plane direction.
doi_str_mv 10.1016/j.electacta.2006.04.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29514980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346860600483X</els_id><sourcerecordid>29514980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDWQDu4RJ4jjODlS1gMRjAawtZzwGV2lc7BSJvydVK1gijTSbc-9oDmPnOWQ55OJqmVFHOOhxsgJAZMAzKOCATXJZl2kpq-aQTQDyMuVCimN2EuMSAGpRw4Rdz7fh4A2tfXSD833ibbKgmX9yyfDh-sS6bhUT60Oy0u89DQ7Tx_njS2LoyyHFU3ZkdRfpbL-n7G0xf53dpQ_Pt_ezm4cUOS-GtOCFMdQ20ECp29q2HNu2EnVNFhqZ8woNt4SoRWlQWsux1NqQkLqUhUBZTtnlrncd_OeG4qBWLiJ1ne7Jb6IqmirnjYQRrHcgBh9jIKvWwa10-FY5qK0xtVS_xtTWmAKuRmNj8mJ_QkfUnQ26Rxf_4hKaohbVyN3sOBr__XIUVERHPZJxYexVxrt_b_0AFQGGOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29514980</pqid></control><display><type>article</type><title>Electrodeposition of FeCoNi thin films for magnetic-MEMS devices</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yoo, B.Y. ; Hernandez, S.C. ; Park, D.-Y. ; Myung, N.V.</creator><creatorcontrib>Yoo, B.Y. ; Hernandez, S.C. ; Park, D.-Y. ; Myung, N.V.</creatorcontrib><description>The physical properties, including macro and microstructures, film stress, and corrosion resistances, along with the magnetic properties of electrodeposited FeCoNi thin films, which can be later integrated to magnetic-MEMS devices were systematically investigated by varying film composition. Increased Ni content affected both macro and microstructure of electrodeposits, switching from columnar structure to lamellar structure and from body centered cubic (BCC) to face centered cubic (FCC), respectively. The film stress of electrodeposits was increased with increasing deposit Ni content and it was inversely proportional to grain size. The corrosion resistance of films determined by polarization resistance and pitting potential initially improved with increasing deposit nickel content, followed by a maximum at ∼48 at.% deposit Ni content. After reaching an upper limit, the corrosion resistance slightly decreased with increasing deposit Ni content. The coercivity of FeCoNi alloy decreased when Ni content increased from 0 at.% to ∼13 at.% which might be due to decrease in grain size. However, from ∼13 at.% to ∼48 at.%, coercivity increased, which could be predominately affected by changes in film stress and microstructure. Fe-rich FeCoNi thin films (e.g. 68Fe29Co 3Ni) show good magnetic properties with minimum film stress for magnetic-MEMS actuated in the out-of-plane direction.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2006.04.020</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemistry ; Cross-disciplinary physics: materials science; rheology ; Electrochemistry ; Electrodeposition ; Electrodeposition, electroplating ; Exact sciences and technology ; FeCoNi ; Film stress ; General and physical chemistry ; Magnetic thin film ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Physics ; Study of interfaces</subject><ispartof>Electrochimica acta, 2006-09, Vol.51 (28), p.6346-6352</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83</citedby><cites>FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18092765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, B.Y.</creatorcontrib><creatorcontrib>Hernandez, S.C.</creatorcontrib><creatorcontrib>Park, D.-Y.</creatorcontrib><creatorcontrib>Myung, N.V.</creatorcontrib><title>Electrodeposition of FeCoNi thin films for magnetic-MEMS devices</title><title>Electrochimica acta</title><description>The physical properties, including macro and microstructures, film stress, and corrosion resistances, along with the magnetic properties of electrodeposited FeCoNi thin films, which can be later integrated to magnetic-MEMS devices were systematically investigated by varying film composition. Increased Ni content affected both macro and microstructure of electrodeposits, switching from columnar structure to lamellar structure and from body centered cubic (BCC) to face centered cubic (FCC), respectively. The film stress of electrodeposits was increased with increasing deposit Ni content and it was inversely proportional to grain size. The corrosion resistance of films determined by polarization resistance and pitting potential initially improved with increasing deposit nickel content, followed by a maximum at ∼48 at.% deposit Ni content. After reaching an upper limit, the corrosion resistance slightly decreased with increasing deposit Ni content. The coercivity of FeCoNi alloy decreased when Ni content increased from 0 at.% to ∼13 at.% which might be due to decrease in grain size. However, from ∼13 at.% to ∼48 at.%, coercivity increased, which could be predominately affected by changes in film stress and microstructure. Fe-rich FeCoNi thin films (e.g. 68Fe29Co 3Ni) show good magnetic properties with minimum film stress for magnetic-MEMS actuated in the out-of-plane direction.</description><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>FeCoNi</subject><subject>Film stress</subject><subject>General and physical chemistry</subject><subject>Magnetic thin film</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Study of interfaces</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDWQDu4RJ4jjODlS1gMRjAawtZzwGV2lc7BSJvydVK1gijTSbc-9oDmPnOWQ55OJqmVFHOOhxsgJAZMAzKOCATXJZl2kpq-aQTQDyMuVCimN2EuMSAGpRw4Rdz7fh4A2tfXSD833ibbKgmX9yyfDh-sS6bhUT60Oy0u89DQ7Tx_njS2LoyyHFU3ZkdRfpbL-n7G0xf53dpQ_Pt_ezm4cUOS-GtOCFMdQ20ECp29q2HNu2EnVNFhqZ8woNt4SoRWlQWsux1NqQkLqUhUBZTtnlrncd_OeG4qBWLiJ1ne7Jb6IqmirnjYQRrHcgBh9jIKvWwa10-FY5qK0xtVS_xtTWmAKuRmNj8mJ_QkfUnQ26Rxf_4hKaohbVyN3sOBr__XIUVERHPZJxYexVxrt_b_0AFQGGOQ</recordid><startdate>20060915</startdate><enddate>20060915</enddate><creator>Yoo, B.Y.</creator><creator>Hernandez, S.C.</creator><creator>Park, D.-Y.</creator><creator>Myung, N.V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060915</creationdate><title>Electrodeposition of FeCoNi thin films for magnetic-MEMS devices</title><author>Yoo, B.Y. ; Hernandez, S.C. ; Park, D.-Y. ; Myung, N.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>FeCoNi</topic><topic>Film stress</topic><topic>General and physical chemistry</topic><topic>Magnetic thin film</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Study of interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, B.Y.</creatorcontrib><creatorcontrib>Hernandez, S.C.</creatorcontrib><creatorcontrib>Park, D.-Y.</creatorcontrib><creatorcontrib>Myung, N.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, B.Y.</au><au>Hernandez, S.C.</au><au>Park, D.-Y.</au><au>Myung, N.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrodeposition of FeCoNi thin films for magnetic-MEMS devices</atitle><jtitle>Electrochimica acta</jtitle><date>2006-09-15</date><risdate>2006</risdate><volume>51</volume><issue>28</issue><spage>6346</spage><epage>6352</epage><pages>6346-6352</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>The physical properties, including macro and microstructures, film stress, and corrosion resistances, along with the magnetic properties of electrodeposited FeCoNi thin films, which can be later integrated to magnetic-MEMS devices were systematically investigated by varying film composition. Increased Ni content affected both macro and microstructure of electrodeposits, switching from columnar structure to lamellar structure and from body centered cubic (BCC) to face centered cubic (FCC), respectively. The film stress of electrodeposits was increased with increasing deposit Ni content and it was inversely proportional to grain size. The corrosion resistance of films determined by polarization resistance and pitting potential initially improved with increasing deposit nickel content, followed by a maximum at ∼48 at.% deposit Ni content. After reaching an upper limit, the corrosion resistance slightly decreased with increasing deposit Ni content. The coercivity of FeCoNi alloy decreased when Ni content increased from 0 at.% to ∼13 at.% which might be due to decrease in grain size. However, from ∼13 at.% to ∼48 at.%, coercivity increased, which could be predominately affected by changes in film stress and microstructure. Fe-rich FeCoNi thin films (e.g. 68Fe29Co 3Ni) show good magnetic properties with minimum film stress for magnetic-MEMS actuated in the out-of-plane direction.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2006.04.020</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2006-09, Vol.51 (28), p.6346-6352
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_29514980
source ScienceDirect Freedom Collection 2022-2024
subjects Chemistry
Cross-disciplinary physics: materials science
rheology
Electrochemistry
Electrodeposition
Electrodeposition, electroplating
Exact sciences and technology
FeCoNi
Film stress
General and physical chemistry
Magnetic thin film
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microstructure
Physics
Study of interfaces
title Electrodeposition of FeCoNi thin films for magnetic-MEMS devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrodeposition%20of%20FeCoNi%20thin%20films%20for%20magnetic-MEMS%20devices&rft.jtitle=Electrochimica%20acta&rft.au=Yoo,%20B.Y.&rft.date=2006-09-15&rft.volume=51&rft.issue=28&rft.spage=6346&rft.epage=6352&rft.pages=6346-6352&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2006.04.020&rft_dat=%3Cproquest_cross%3E29514980%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-242ddeb90903ab7fb4cbb5677ef098145cd4fecca63dc8ff4c3aade68a3826c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29514980&rft_id=info:pmid/&rfr_iscdi=true