Loading…

Identifying general reaction conditions by bandit optimization

Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries . Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently d...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-02, Vol.626 (8001), p.1025-1033
Main Authors: Wang, Jason Y, Stevens, Jason M, Kariofillis, Stavros K, Tom, Mai-Jan, Golden, Dung L, Li, Jun, Tabora, Jose E, Parasram, Marvin, Shields, Benjamin J, Primer, David N, Hao, Bo, Del Valle, David, DiSomma, Stacey, Furman, Ariel, Zipp, G Greg, Melnikov, Sergey, Paulson, James, Doyle, Abigail G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c282t-ea04ad522e85a51fb08f51135756ab76cbfda1214df04350cc6006cc6fa8d3ff3
container_end_page 1033
container_issue 8001
container_start_page 1025
container_title Nature (London)
container_volume 626
creator Wang, Jason Y
Stevens, Jason M
Kariofillis, Stavros K
Tom, Mai-Jan
Golden, Dung L
Li, Jun
Tabora, Jose E
Parasram, Marvin
Shields, Benjamin J
Primer, David N
Hao, Bo
Del Valle, David
DiSomma, Stacey
Furman, Ariel
Zipp, G Greg
Melnikov, Sergey
Paulson, James
Doyle, Abigail G
description Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries . Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.
doi_str_mv 10.1038/s41586-024-07021-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2933462629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937395795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-ea04ad522e85a51fb08f51135756ab76cbfda1214df04350cc6006cc6fa8d3ff3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWqt_wIMsePESnXxnL4IUPwoFL3oO2d2kpOxHTbaH9de7a6sHL_PODO-8DA9CVwTuCDB9nzgRWmKgHIMCSvBwhGaEK4m51OoYzQCoxqCZPEPnKW0AQBDFT9EZ05zonNAZelhWru2DH0K7ztauddHWWXS27EPXZmXXVmHqUlYMWWGnKeu2fWjCl532F-jE2zq5y4PO0cfz0_viFa_eXpaLxxUuqaY9dha4rQSlTgsriC9Ae0EIE0pIWyhZFr6yhBJeeeBMQFlKADlWb3XFvGdzdLvP3cbuc-dSb5qQSlfXtnXdLhmaM8YllaPO0c0_66bbxXb8bnIplguVi9FF964ydilF5802hsbGwRAwE12zp2tGuuaHrhnGo-tD9K5oXPV38ouTfQMrqnV1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937395795</pqid></control><display><type>article</type><title>Identifying general reaction conditions by bandit optimization</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Wang, Jason Y ; Stevens, Jason M ; Kariofillis, Stavros K ; Tom, Mai-Jan ; Golden, Dung L ; Li, Jun ; Tabora, Jose E ; Parasram, Marvin ; Shields, Benjamin J ; Primer, David N ; Hao, Bo ; Del Valle, David ; DiSomma, Stacey ; Furman, Ariel ; Zipp, G Greg ; Melnikov, Sergey ; Paulson, James ; Doyle, Abigail G</creator><creatorcontrib>Wang, Jason Y ; Stevens, Jason M ; Kariofillis, Stavros K ; Tom, Mai-Jan ; Golden, Dung L ; Li, Jun ; Tabora, Jose E ; Parasram, Marvin ; Shields, Benjamin J ; Primer, David N ; Hao, Bo ; Del Valle, David ; DiSomma, Stacey ; Furman, Ariel ; Zipp, G Greg ; Melnikov, Sergey ; Paulson, James ; Doyle, Abigail G</creatorcontrib><description>Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries . Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07021-y</identifier><identifier>PMID: 38418912</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Algorithms ; Alkylation ; Aniline ; Chemical reactions ; Chemistry ; Chemists ; Datasets ; Design ; Gaming machines ; Imidazole ; Optimization ; Optimization models ; Palladium ; Phenols ; Software ; Substrates</subject><ispartof>Nature (London), 2024-02, Vol.626 (8001), p.1025-1033</ispartof><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Feb 29, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-ea04ad522e85a51fb08f51135756ab76cbfda1214df04350cc6006cc6fa8d3ff3</cites><orcidid>0000-0003-1764-4497 ; 0000-0002-5461-3190 ; 0000-0002-6641-0833 ; 0000-0003-1671-1539 ; 0000-0002-9044-4873 ; 0000-0002-0594-7143 ; 0000-0001-5826-2554 ; 0009-0000-3043-9637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38418912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jason Y</creatorcontrib><creatorcontrib>Stevens, Jason M</creatorcontrib><creatorcontrib>Kariofillis, Stavros K</creatorcontrib><creatorcontrib>Tom, Mai-Jan</creatorcontrib><creatorcontrib>Golden, Dung L</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Tabora, Jose E</creatorcontrib><creatorcontrib>Parasram, Marvin</creatorcontrib><creatorcontrib>Shields, Benjamin J</creatorcontrib><creatorcontrib>Primer, David N</creatorcontrib><creatorcontrib>Hao, Bo</creatorcontrib><creatorcontrib>Del Valle, David</creatorcontrib><creatorcontrib>DiSomma, Stacey</creatorcontrib><creatorcontrib>Furman, Ariel</creatorcontrib><creatorcontrib>Zipp, G Greg</creatorcontrib><creatorcontrib>Melnikov, Sergey</creatorcontrib><creatorcontrib>Paulson, James</creatorcontrib><creatorcontrib>Doyle, Abigail G</creatorcontrib><title>Identifying general reaction conditions by bandit optimization</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries . Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.</description><subject>Algorithms</subject><subject>Alkylation</subject><subject>Aniline</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Datasets</subject><subject>Design</subject><subject>Gaming machines</subject><subject>Imidazole</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Palladium</subject><subject>Phenols</subject><subject>Software</subject><subject>Substrates</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWqt_wIMsePESnXxnL4IUPwoFL3oO2d2kpOxHTbaH9de7a6sHL_PODO-8DA9CVwTuCDB9nzgRWmKgHIMCSvBwhGaEK4m51OoYzQCoxqCZPEPnKW0AQBDFT9EZ05zonNAZelhWru2DH0K7ztauddHWWXS27EPXZmXXVmHqUlYMWWGnKeu2fWjCl532F-jE2zq5y4PO0cfz0_viFa_eXpaLxxUuqaY9dha4rQSlTgsriC9Ae0EIE0pIWyhZFr6yhBJeeeBMQFlKADlWb3XFvGdzdLvP3cbuc-dSb5qQSlfXtnXdLhmaM8YllaPO0c0_66bbxXb8bnIplguVi9FF964ydilF5802hsbGwRAwE12zp2tGuuaHrhnGo-tD9K5oXPV38ouTfQMrqnV1</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Wang, Jason Y</creator><creator>Stevens, Jason M</creator><creator>Kariofillis, Stavros K</creator><creator>Tom, Mai-Jan</creator><creator>Golden, Dung L</creator><creator>Li, Jun</creator><creator>Tabora, Jose E</creator><creator>Parasram, Marvin</creator><creator>Shields, Benjamin J</creator><creator>Primer, David N</creator><creator>Hao, Bo</creator><creator>Del Valle, David</creator><creator>DiSomma, Stacey</creator><creator>Furman, Ariel</creator><creator>Zipp, G Greg</creator><creator>Melnikov, Sergey</creator><creator>Paulson, James</creator><creator>Doyle, Abigail G</creator><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1764-4497</orcidid><orcidid>https://orcid.org/0000-0002-5461-3190</orcidid><orcidid>https://orcid.org/0000-0002-6641-0833</orcidid><orcidid>https://orcid.org/0000-0003-1671-1539</orcidid><orcidid>https://orcid.org/0000-0002-9044-4873</orcidid><orcidid>https://orcid.org/0000-0002-0594-7143</orcidid><orcidid>https://orcid.org/0000-0001-5826-2554</orcidid><orcidid>https://orcid.org/0009-0000-3043-9637</orcidid></search><sort><creationdate>20240229</creationdate><title>Identifying general reaction conditions by bandit optimization</title><author>Wang, Jason Y ; Stevens, Jason M ; Kariofillis, Stavros K ; Tom, Mai-Jan ; Golden, Dung L ; Li, Jun ; Tabora, Jose E ; Parasram, Marvin ; Shields, Benjamin J ; Primer, David N ; Hao, Bo ; Del Valle, David ; DiSomma, Stacey ; Furman, Ariel ; Zipp, G Greg ; Melnikov, Sergey ; Paulson, James ; Doyle, Abigail G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-ea04ad522e85a51fb08f51135756ab76cbfda1214df04350cc6006cc6fa8d3ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alkylation</topic><topic>Aniline</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Datasets</topic><topic>Design</topic><topic>Gaming machines</topic><topic>Imidazole</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Palladium</topic><topic>Phenols</topic><topic>Software</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jason Y</creatorcontrib><creatorcontrib>Stevens, Jason M</creatorcontrib><creatorcontrib>Kariofillis, Stavros K</creatorcontrib><creatorcontrib>Tom, Mai-Jan</creatorcontrib><creatorcontrib>Golden, Dung L</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Tabora, Jose E</creatorcontrib><creatorcontrib>Parasram, Marvin</creatorcontrib><creatorcontrib>Shields, Benjamin J</creatorcontrib><creatorcontrib>Primer, David N</creatorcontrib><creatorcontrib>Hao, Bo</creatorcontrib><creatorcontrib>Del Valle, David</creatorcontrib><creatorcontrib>DiSomma, Stacey</creatorcontrib><creatorcontrib>Furman, Ariel</creatorcontrib><creatorcontrib>Zipp, G Greg</creatorcontrib><creatorcontrib>Melnikov, Sergey</creatorcontrib><creatorcontrib>Paulson, James</creatorcontrib><creatorcontrib>Doyle, Abigail G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jason Y</au><au>Stevens, Jason M</au><au>Kariofillis, Stavros K</au><au>Tom, Mai-Jan</au><au>Golden, Dung L</au><au>Li, Jun</au><au>Tabora, Jose E</au><au>Parasram, Marvin</au><au>Shields, Benjamin J</au><au>Primer, David N</au><au>Hao, Bo</au><au>Del Valle, David</au><au>DiSomma, Stacey</au><au>Furman, Ariel</au><au>Zipp, G Greg</au><au>Melnikov, Sergey</au><au>Paulson, James</au><au>Doyle, Abigail G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying general reaction conditions by bandit optimization</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>626</volume><issue>8001</issue><spage>1025</spage><epage>1033</epage><pages>1025-1033</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries . Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C-H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>38418912</pmid><doi>10.1038/s41586-024-07021-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1764-4497</orcidid><orcidid>https://orcid.org/0000-0002-5461-3190</orcidid><orcidid>https://orcid.org/0000-0002-6641-0833</orcidid><orcidid>https://orcid.org/0000-0003-1671-1539</orcidid><orcidid>https://orcid.org/0000-0002-9044-4873</orcidid><orcidid>https://orcid.org/0000-0002-0594-7143</orcidid><orcidid>https://orcid.org/0000-0001-5826-2554</orcidid><orcidid>https://orcid.org/0009-0000-3043-9637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-02, Vol.626 (8001), p.1025-1033
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2933462629
source Springer Nature - Connect here FIRST to enable access
subjects Algorithms
Alkylation
Aniline
Chemical reactions
Chemistry
Chemists
Datasets
Design
Gaming machines
Imidazole
Optimization
Optimization models
Palladium
Phenols
Software
Substrates
title Identifying general reaction conditions by bandit optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T00%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20general%20reaction%20conditions%20by%20bandit%20optimization&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Jason%20Y&rft.date=2024-02-29&rft.volume=626&rft.issue=8001&rft.spage=1025&rft.epage=1033&rft.pages=1025-1033&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07021-y&rft_dat=%3Cproquest_cross%3E2937395795%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-ea04ad522e85a51fb08f51135756ab76cbfda1214df04350cc6006cc6fa8d3ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937395795&rft_id=info:pmid/38418912&rfr_iscdi=true