Loading…

Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions

Summary Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC‐1, one of two genes encoding the respiratory chain co...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2024-03, Vol.241 (5), p.2039-2058
Main Authors: Canal, María Victoria, Mansilla, Natanael, Gras, Diana E., Ibarra, Agustín, Figueroa, Carlos M., Gonzalez, Daniel H., Welchen, Elina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3136-c4a74e458df4a416300c11b85d7689e75f2a615aaac7d20700979595cffbfa643
container_end_page 2058
container_issue 5
container_start_page 2039
container_title The New phytologist
container_volume 241
creator Canal, María Victoria
Mansilla, Natanael
Gras, Diana E.
Ibarra, Agustín
Figueroa, Carlos M.
Gonzalez, Daniel H.
Welchen, Elina
description Summary Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC‐1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)‐pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc‐1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc‐deficient plants coordinate their metabolism and energy availability by reducing TOR‐pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.
doi_str_mv 10.1111/nph.19506
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2912525288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923181729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3136-c4a74e458df4a416300c11b85d7689e75f2a615aaac7d20700979595cffbfa643</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALgei0sOAFKkts6CKtncR_y2oEtFJFK1QkdpHHuZ6kSuzUdhhlxyPwjDwJplO6QKq98ObT0b0-CL2j5JTmc-am7pQqRvgLtKI1V4WklXiJVoSUsuA1_36ADmO8I4QoxsvX6KCSVFHBqxWa1kvypgt-BGzwAD9giFhbCybh1AG-vf6KJ526nV5w8jjAdh50ArwNfpc6rF2LR0h644c-jnh2LQQMDsJ2-f3zVwu2Nz24hI13bZ967-Ib9MrqIcLbx_cIffv08XZ9UVxdf75cn18VpqIVL0ytRQ01k62tdU15RYihdCNZK7hUIJgtNadMa21EWxKRVxOKKWas3VjN6-oIfdjnTsHfzxBTM_bRwDBoB36OTaloyfKVMtP3_9E7PweXp8uqrKikolRZneyVCT7GALaZQj_qsDSUNH9raHINzUMN2R4_Js6bEdon-e_fMzjbg10_wPJ8UvPl5mIf-QcCDpMC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923181729</pqid></control><display><type>article</type><title>Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions</title><source>Wiley-Blackwell Journals</source><creator>Canal, María Victoria ; Mansilla, Natanael ; Gras, Diana E. ; Ibarra, Agustín ; Figueroa, Carlos M. ; Gonzalez, Daniel H. ; Welchen, Elina</creator><creatorcontrib>Canal, María Victoria ; Mansilla, Natanael ; Gras, Diana E. ; Ibarra, Agustín ; Figueroa, Carlos M. ; Gonzalez, Daniel H. ; Welchen, Elina</creatorcontrib><description>Summary Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC‐1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)‐pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc‐1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc‐deficient plants coordinate their metabolism and energy availability by reducing TOR‐pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19506</identifier><identifier>PMID: 38191763</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Amino acids ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; ATP ; Autophagy ; Biodegradation ; Carbon sources ; Cytochrome ; Cytochrome c ; Cytochromes ; Cytochromes c - genetics ; Cytochromes c - metabolism ; Darkness ; Electron transport ; Energy ; energy deficiency ; Energy metabolism ; Genes ; Kinases ; Membrane potential ; Membranes ; Metabolism ; Mitochondria ; Nutrient deficiency ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Plant growth ; Plants ; Proteasomes ; Proteins ; Rapamycin ; Ribosomal Protein S6 Kinases - metabolism ; Sirolimus - pharmacology ; starvation ; target of rapamycin ; TOR protein</subject><ispartof>The New phytologist, 2024-03, Vol.241 (5), p.2039-2058</ispartof><rights>2024 The Authors. © 2024 New Phytologist Foundation</rights><rights>2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2024 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3136-c4a74e458df4a416300c11b85d7689e75f2a615aaac7d20700979595cffbfa643</cites><orcidid>0009-0003-7726-395X ; 0000-0001-6052-3223 ; 0000-0003-4025-573X ; 0000-0003-4047-0480 ; 0000-0002-3137-8095 ; 0009-0000-0874-1995 ; 0009-0000-0690-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19506$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19506$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38191763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Canal, María Victoria</creatorcontrib><creatorcontrib>Mansilla, Natanael</creatorcontrib><creatorcontrib>Gras, Diana E.</creatorcontrib><creatorcontrib>Ibarra, Agustín</creatorcontrib><creatorcontrib>Figueroa, Carlos M.</creatorcontrib><creatorcontrib>Gonzalez, Daniel H.</creatorcontrib><creatorcontrib>Welchen, Elina</creatorcontrib><title>Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC‐1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)‐pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc‐1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc‐deficient plants coordinate their metabolism and energy availability by reducing TOR‐pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino acids</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>ATP</subject><subject>Autophagy</subject><subject>Biodegradation</subject><subject>Carbon sources</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes</subject><subject>Cytochromes c - genetics</subject><subject>Cytochromes c - metabolism</subject><subject>Darkness</subject><subject>Electron transport</subject><subject>Energy</subject><subject>energy deficiency</subject><subject>Energy metabolism</subject><subject>Genes</subject><subject>Kinases</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Nutrient deficiency</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Plant growth</subject><subject>Plants</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Ribosomal Protein S6 Kinases - metabolism</subject><subject>Sirolimus - pharmacology</subject><subject>starvation</subject><subject>target of rapamycin</subject><subject>TOR protein</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10c1u1DAUBWALgei0sOAFKkts6CKtncR_y2oEtFJFK1QkdpHHuZ6kSuzUdhhlxyPwjDwJplO6QKq98ObT0b0-CL2j5JTmc-am7pQqRvgLtKI1V4WklXiJVoSUsuA1_36ADmO8I4QoxsvX6KCSVFHBqxWa1kvypgt-BGzwAD9giFhbCybh1AG-vf6KJ526nV5w8jjAdh50ArwNfpc6rF2LR0h644c-jnh2LQQMDsJ2-f3zVwu2Nz24hI13bZ967-Ib9MrqIcLbx_cIffv08XZ9UVxdf75cn18VpqIVL0ytRQ01k62tdU15RYihdCNZK7hUIJgtNadMa21EWxKRVxOKKWas3VjN6-oIfdjnTsHfzxBTM_bRwDBoB36OTaloyfKVMtP3_9E7PweXp8uqrKikolRZneyVCT7GALaZQj_qsDSUNH9raHINzUMN2R4_Js6bEdon-e_fMzjbg10_wPJ8UvPl5mIf-QcCDpMC</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Canal, María Victoria</creator><creator>Mansilla, Natanael</creator><creator>Gras, Diana E.</creator><creator>Ibarra, Agustín</creator><creator>Figueroa, Carlos M.</creator><creator>Gonzalez, Daniel H.</creator><creator>Welchen, Elina</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-7726-395X</orcidid><orcidid>https://orcid.org/0000-0001-6052-3223</orcidid><orcidid>https://orcid.org/0000-0003-4025-573X</orcidid><orcidid>https://orcid.org/0000-0003-4047-0480</orcidid><orcidid>https://orcid.org/0000-0002-3137-8095</orcidid><orcidid>https://orcid.org/0009-0000-0874-1995</orcidid><orcidid>https://orcid.org/0009-0000-0690-6813</orcidid></search><sort><creationdate>202403</creationdate><title>Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions</title><author>Canal, María Victoria ; Mansilla, Natanael ; Gras, Diana E. ; Ibarra, Agustín ; Figueroa, Carlos M. ; Gonzalez, Daniel H. ; Welchen, Elina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3136-c4a74e458df4a416300c11b85d7689e75f2a615aaac7d20700979595cffbfa643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino acids</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>ATP</topic><topic>Autophagy</topic><topic>Biodegradation</topic><topic>Carbon sources</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes</topic><topic>Cytochromes c - genetics</topic><topic>Cytochromes c - metabolism</topic><topic>Darkness</topic><topic>Electron transport</topic><topic>Energy</topic><topic>energy deficiency</topic><topic>Energy metabolism</topic><topic>Genes</topic><topic>Kinases</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Nutrient deficiency</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Plant growth</topic><topic>Plants</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Ribosomal Protein S6 Kinases - metabolism</topic><topic>Sirolimus - pharmacology</topic><topic>starvation</topic><topic>target of rapamycin</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canal, María Victoria</creatorcontrib><creatorcontrib>Mansilla, Natanael</creatorcontrib><creatorcontrib>Gras, Diana E.</creatorcontrib><creatorcontrib>Ibarra, Agustín</creatorcontrib><creatorcontrib>Figueroa, Carlos M.</creatorcontrib><creatorcontrib>Gonzalez, Daniel H.</creatorcontrib><creatorcontrib>Welchen, Elina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canal, María Victoria</au><au>Mansilla, Natanael</au><au>Gras, Diana E.</au><au>Ibarra, Agustín</au><au>Figueroa, Carlos M.</au><au>Gonzalez, Daniel H.</au><au>Welchen, Elina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-03</date><risdate>2024</risdate><volume>241</volume><issue>5</issue><spage>2039</spage><epage>2058</epage><pages>2039-2058</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Summary Mitochondrial function is essential for plant growth, but the mechanisms involved in adjusting growth and metabolism to changes in mitochondrial energy production are not fully understood. We studied plants with reduced expression of CYTC‐1, one of two genes encoding the respiratory chain component cytochrome c (CYTc) in Arabidopsis, to understand how mitochondria communicate their status to coordinate metabolism and growth. Plants with CYTc deficiency show decreased mitochondrial membrane potential and lower ATP content, even when carbon sources are present. They also exhibit higher free amino acid content, induced autophagy, and increased resistance to nutritional stress caused by prolonged darkness, similar to plants with triggered starvation signals. CYTc deficiency affects target of rapamycin (TOR)‐pathway activation, reducing S6 kinase (S6K) and RPS6A phosphorylation, as well as total S6K protein levels due to increased protein degradation via proteasome and autophagy. TOR overexpression restores growth and other parameters affected in cytc‐1 mutants, even if mitochondrial membrane potential and ATP levels remain low. We propose that CYTc‐deficient plants coordinate their metabolism and energy availability by reducing TOR‐pathway activation as a preventive signal to adjust growth in anticipation of energy exhaustion, thus providing a mechanism by which changes in mitochondrial activity are transduced to the rest of the cell.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38191763</pmid><doi>10.1111/nph.19506</doi><tpages>2058</tpages><orcidid>https://orcid.org/0009-0003-7726-395X</orcidid><orcidid>https://orcid.org/0000-0001-6052-3223</orcidid><orcidid>https://orcid.org/0000-0003-4025-573X</orcidid><orcidid>https://orcid.org/0000-0003-4047-0480</orcidid><orcidid>https://orcid.org/0000-0002-3137-8095</orcidid><orcidid>https://orcid.org/0009-0000-0874-1995</orcidid><orcidid>https://orcid.org/0009-0000-0690-6813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-03, Vol.241 (5), p.2039-2058
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2912525288
source Wiley-Blackwell Journals
subjects Adenosine Triphosphate - metabolism
Amino acids
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
ATP
Autophagy
Biodegradation
Carbon sources
Cytochrome
Cytochrome c
Cytochromes
Cytochromes c - genetics
Cytochromes c - metabolism
Darkness
Electron transport
Energy
energy deficiency
Energy metabolism
Genes
Kinases
Membrane potential
Membranes
Metabolism
Mitochondria
Nutrient deficiency
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Plant growth
Plants
Proteasomes
Proteins
Rapamycin
Ribosomal Protein S6 Kinases - metabolism
Sirolimus - pharmacology
starvation
target of rapamycin
TOR protein
title Cytochrome c levels affect the TOR pathway to regulate growth and metabolism under energy‐deficient conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T09%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytochrome%20c%20levels%20affect%20the%20TOR%20pathway%20to%20regulate%20growth%20and%20metabolism%20under%20energy%E2%80%90deficient%20conditions&rft.jtitle=The%20New%20phytologist&rft.au=Canal,%20Mar%C3%ADa%20Victoria&rft.date=2024-03&rft.volume=241&rft.issue=5&rft.spage=2039&rft.epage=2058&rft.pages=2039-2058&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19506&rft_dat=%3Cproquest_cross%3E2923181729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3136-c4a74e458df4a416300c11b85d7689e75f2a615aaac7d20700979595cffbfa643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923181729&rft_id=info:pmid/38191763&rfr_iscdi=true