Loading…

Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale

We demonstrate nanoscale architectures in real biominerals and their biomimetics. Mimicking biomineralization, that is, crystal design in association with organic molecules, has been demonstrated in recent years. Although the macroscopic morphologies in real biominerals and biomimetics have been ext...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2006-08, Vol.16 (12), p.1633-1639
Main Authors: Oaki, Y., Kotachi, A., Miura, T., Imai, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793
cites cdi_FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793
container_end_page 1639
container_issue 12
container_start_page 1633
container_title Advanced functional materials
container_volume 16
creator Oaki, Y.
Kotachi, A.
Miura, T.
Imai, H.
description We demonstrate nanoscale architectures in real biominerals and their biomimetics. Mimicking biomineralization, that is, crystal design in association with organic molecules, has been demonstrated in recent years. Although the macroscopic morphologies in real biominerals and biomimetics have been extensively studied, the nanoscopic structures in terms of the crystal growth are still not fully understood. We show that both materials form oriented architectures of bridged nanocrystals with incorporated organic polymers. The growth of nanocrystals by association with polymers is a significant step for the understanding and developing of crystal growth. The strategy could be applied to various systems in nanoscale crystal growth leading to functional materials. Calcium carbonate biominerals and their biomimetics are made by the oriented architecture of bridged nanocrystals associated with polymers. The nanoscopic mineral bridges direct the crystal growth, leading to a variety of macroscopic morphologies (see figure). Crystal growth can thus be used in materials processing for a wide range of applications.
doi_str_mv 10.1002/adfm.200600262
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29119821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29119821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793</originalsourceid><addsrcrecordid>eNqFkDtPwzAURiMEElBYmT2xpfiR2gkbFFqQ2lKkAmWyjH1DDUlc7FTQf09KUMXGdB865xu-KDohuEswpmfK5GWXYsybg9Od6IBwwmOGabq73cl8PzoM4Q1jIgRLDiJ36a15BYMmqnLar0OtioBshS6tK20FfnOqyqDZAqxvvyXUVodz1C9UCFarAj1DjcbOgK9Qv81AQ-8-6wVyFaoX8JMeGhKOor28iYTj39mJHgbXs_5NPLob3vYvRrFmvZTGlKsE8wxjnakXnWLQSmuRigSExobRlOfAhDJJIjKScxDMCNxjoBPC2IvIWCc6bXOX3n2sINSytEFDUagK3CpImhGSpZQ0YLcFtXcheMjl0ttS-bUkWG56lZte5bbXRsha4dMWsP6HlhdXg_FfN25dG2r42rrKv0sumOjJp8lQkul9bz59vJEz9g2dp4xq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29119821</pqid></control><display><type>article</type><title>Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale</title><source>Wiley</source><creator>Oaki, Y. ; Kotachi, A. ; Miura, T. ; Imai, H.</creator><creatorcontrib>Oaki, Y. ; Kotachi, A. ; Miura, T. ; Imai, H.</creatorcontrib><description>We demonstrate nanoscale architectures in real biominerals and their biomimetics. Mimicking biomineralization, that is, crystal design in association with organic molecules, has been demonstrated in recent years. Although the macroscopic morphologies in real biominerals and biomimetics have been extensively studied, the nanoscopic structures in terms of the crystal growth are still not fully understood. We show that both materials form oriented architectures of bridged nanocrystals with incorporated organic polymers. The growth of nanocrystals by association with polymers is a significant step for the understanding and developing of crystal growth. The strategy could be applied to various systems in nanoscale crystal growth leading to functional materials. Calcium carbonate biominerals and their biomimetics are made by the oriented architecture of bridged nanocrystals associated with polymers. The nanoscopic mineral bridges direct the crystal growth, leading to a variety of macroscopic morphologies (see figure). Crystal growth can thus be used in materials processing for a wide range of applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200600262</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biomimetics ; Calcium carbonate ; Nanocrystals ; Polymer nanocomposites</subject><ispartof>Advanced functional materials, 2006-08, Vol.16 (12), p.1633-1639</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793</citedby><cites>FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200600262$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,51032</link.rule.ids></links><search><creatorcontrib>Oaki, Y.</creatorcontrib><creatorcontrib>Kotachi, A.</creatorcontrib><creatorcontrib>Miura, T.</creatorcontrib><creatorcontrib>Imai, H.</creatorcontrib><title>Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>We demonstrate nanoscale architectures in real biominerals and their biomimetics. Mimicking biomineralization, that is, crystal design in association with organic molecules, has been demonstrated in recent years. Although the macroscopic morphologies in real biominerals and biomimetics have been extensively studied, the nanoscopic structures in terms of the crystal growth are still not fully understood. We show that both materials form oriented architectures of bridged nanocrystals with incorporated organic polymers. The growth of nanocrystals by association with polymers is a significant step for the understanding and developing of crystal growth. The strategy could be applied to various systems in nanoscale crystal growth leading to functional materials. Calcium carbonate biominerals and their biomimetics are made by the oriented architecture of bridged nanocrystals associated with polymers. The nanoscopic mineral bridges direct the crystal growth, leading to a variety of macroscopic morphologies (see figure). Crystal growth can thus be used in materials processing for a wide range of applications.</description><subject>Biomimetics</subject><subject>Calcium carbonate</subject><subject>Nanocrystals</subject><subject>Polymer nanocomposites</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURiMEElBYmT2xpfiR2gkbFFqQ2lKkAmWyjH1DDUlc7FTQf09KUMXGdB865xu-KDohuEswpmfK5GWXYsybg9Od6IBwwmOGabq73cl8PzoM4Q1jIgRLDiJ36a15BYMmqnLar0OtioBshS6tK20FfnOqyqDZAqxvvyXUVodz1C9UCFarAj1DjcbOgK9Qv81AQ-8-6wVyFaoX8JMeGhKOor28iYTj39mJHgbXs_5NPLob3vYvRrFmvZTGlKsE8wxjnakXnWLQSmuRigSExobRlOfAhDJJIjKScxDMCNxjoBPC2IvIWCc6bXOX3n2sINSytEFDUagK3CpImhGSpZQ0YLcFtXcheMjl0ttS-bUkWG56lZte5bbXRsha4dMWsP6HlhdXg_FfN25dG2r42rrKv0sumOjJp8lQkul9bz59vJEz9g2dp4xq</recordid><startdate>20060804</startdate><enddate>20060804</enddate><creator>Oaki, Y.</creator><creator>Kotachi, A.</creator><creator>Miura, T.</creator><creator>Imai, H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060804</creationdate><title>Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale</title><author>Oaki, Y. ; Kotachi, A. ; Miura, T. ; Imai, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomimetics</topic><topic>Calcium carbonate</topic><topic>Nanocrystals</topic><topic>Polymer nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaki, Y.</creatorcontrib><creatorcontrib>Kotachi, A.</creatorcontrib><creatorcontrib>Miura, T.</creatorcontrib><creatorcontrib>Imai, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaki, Y.</au><au>Kotachi, A.</au><au>Miura, T.</au><au>Imai, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2006-08-04</date><risdate>2006</risdate><volume>16</volume><issue>12</issue><spage>1633</spage><epage>1639</epage><pages>1633-1639</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><notes>ArticleID:ADFM200600262</notes><notes>ark:/67375/WNG-1PQ5XPVH-T</notes><notes>This work was supported by the 21st Century COE program "KEIO Life Conjugated Chemistry" from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Y.O. is grateful for a JSPS research fellowship for young scientists. Supporting information is available online from Wiley InterScience or from the author.</notes><notes>21st Century COE program "KEIO Life Conjugated Chemistry" from the Ministry of Education, Culture, Sports, Science, and Technology, Japan</notes><notes>istex:241948E429C2C797A22818E99965E46FEB6DEE58</notes><notes>This work was supported by the 21st Century COE program “KEIO Life Conjugated Chemistry” from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Y.O. is grateful for a JSPS research fellowship for young scientists. Supporting information is available online from Wiley InterScience or from the author.</notes><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>We demonstrate nanoscale architectures in real biominerals and their biomimetics. Mimicking biomineralization, that is, crystal design in association with organic molecules, has been demonstrated in recent years. Although the macroscopic morphologies in real biominerals and biomimetics have been extensively studied, the nanoscopic structures in terms of the crystal growth are still not fully understood. We show that both materials form oriented architectures of bridged nanocrystals with incorporated organic polymers. The growth of nanocrystals by association with polymers is a significant step for the understanding and developing of crystal growth. The strategy could be applied to various systems in nanoscale crystal growth leading to functional materials. Calcium carbonate biominerals and their biomimetics are made by the oriented architecture of bridged nanocrystals associated with polymers. The nanoscopic mineral bridges direct the crystal growth, leading to a variety of macroscopic morphologies (see figure). Crystal growth can thus be used in materials processing for a wide range of applications.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200600262</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2006-08, Vol.16 (12), p.1633-1639
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_29119821
source Wiley
subjects Biomimetics
Calcium carbonate
Nanocrystals
Polymer nanocomposites
title Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T18%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridged%20Nanocrystals%20in%20Biominerals%20and%20Their%20Biomimetics:%20Classical%20Yet%20Modern%20Crystal%20Growth%20on%20the%20Nanoscale&rft.jtitle=Advanced%20functional%20materials&rft.au=Oaki,%20Y.&rft.date=2006-08-04&rft.volume=16&rft.issue=12&rft.spage=1633&rft.epage=1639&rft.pages=1633-1639&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200600262&rft_dat=%3Cproquest_cross%3E29119821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3582-26a406900c9abc80ecacc7874e7c0d3286fe37ad44791f6e73d7053ec4133b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29119821&rft_id=info:pmid/&rfr_iscdi=true