Loading…

Transient bounds for adaptive control systems

Adaptive control systems are essentially nonlinear and mechanisms to analyze their stability and transient response typically derive from more general nonlinear theories such as small gain arguments or passivity. In this note, we consider how these theories may be applied to adaptive control to quan...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1994-01, Vol.39 (1), p.171-175
Main Authors: Zhuquan Zang, Bitmead, R.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013
cites cdi_FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013
container_end_page 175
container_issue 1
container_start_page 171
container_title IEEE transactions on automatic control
container_volume 39
creator Zhuquan Zang
Bitmead, R.R.
description Adaptive control systems are essentially nonlinear and mechanisms to analyze their stability and transient response typically derive from more general nonlinear theories such as small gain arguments or passivity. In this note, we consider how these theories may be applied to adaptive control to quantify transient response. This involves the explicit description of the constants appearing in the passivity theorem and/or the small gain theorem which characterize both system gains and initial condition effects. The result is a fundamental connection between transient response bounds and uniform plant controllability, which connects initial state conditions with the input-output analysis. Applying these general theorems to adaptive control, we are able to interpret the uniform controllability condition as a persistency of excitation requirement and thereby to provide local bounds on transient response. The implication of these sufficient results is that without both bounds upon initial conditions and guarantees of excitation, potentially extreme transient excursions of system variables are possible even though global convergence and asymptotic performance are guaranteed.< >
doi_str_mv 10.1109/9.273360
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29081272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>273360</ieee_id><sourcerecordid>28670766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKvg2dMeRLxsTSYfmxyl-AUFL_UcstkEVrabmtkK_feubOm1p2GYh4d3XkJuGV0wRs2TWUDFuaJnZMak1CVI4OdkRinTpQGtLskV4ve4KiHYjJTr7HpsQz8Uddr1DRYx5cI1bju0v6HwqR9y6grc4xA2eE0uousw3BzmnHy9vqyX7-Xq8-1j-bwqPVdqKAUTQiqjYi0MUzUXrJHOeRgzeBliA4YKznntIGoXteSu5lBJ0UhglFPG5-Rh8m5z-tkFHOymRR-6zvUh7dCOAs2ggtOgVhWtlDoNVqDHDHoEHyfQ54SYQ7Tb3G5c3ltG7X_D1tip4RG9PzgdetfFsUnf4pHnBpSC_2fuJqwNIRyvB8cf4Ih_9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27283278</pqid></control><display><type>article</type><title>Transient bounds for adaptive control systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhuquan Zang ; Bitmead, R.R.</creator><creatorcontrib>Zhuquan Zang ; Bitmead, R.R.</creatorcontrib><description>Adaptive control systems are essentially nonlinear and mechanisms to analyze their stability and transient response typically derive from more general nonlinear theories such as small gain arguments or passivity. In this note, we consider how these theories may be applied to adaptive control to quantify transient response. This involves the explicit description of the constants appearing in the passivity theorem and/or the small gain theorem which characterize both system gains and initial condition effects. The result is a fundamental connection between transient response bounds and uniform plant controllability, which connects initial state conditions with the input-output analysis. Applying these general theorems to adaptive control, we are able to interpret the uniform controllability condition as a persistency of excitation requirement and thereby to provide local bounds on transient response. The implication of these sufficient results is that without both bounds upon initial conditions and guarantees of excitation, potentially extreme transient excursions of system variables are possible even though global convergence and asymptotic performance are guaranteed.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.273360</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptative systems ; Adaptive control ; Adaptive systems ; Applied sciences ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Controllability ; Error correction ; Exact sciences and technology ; Nonlinear control systems ; Robustness ; Signal analysis ; Stability ; Transient response</subject><ispartof>IEEE transactions on automatic control, 1994-01, Vol.39 (1), p.171-175</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013</citedby><cites>FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/273360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,4043,27956,27957,27958,55147</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3926621$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuquan Zang</creatorcontrib><creatorcontrib>Bitmead, R.R.</creatorcontrib><title>Transient bounds for adaptive control systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Adaptive control systems are essentially nonlinear and mechanisms to analyze their stability and transient response typically derive from more general nonlinear theories such as small gain arguments or passivity. In this note, we consider how these theories may be applied to adaptive control to quantify transient response. This involves the explicit description of the constants appearing in the passivity theorem and/or the small gain theorem which characterize both system gains and initial condition effects. The result is a fundamental connection between transient response bounds and uniform plant controllability, which connects initial state conditions with the input-output analysis. Applying these general theorems to adaptive control, we are able to interpret the uniform controllability condition as a persistency of excitation requirement and thereby to provide local bounds on transient response. The implication of these sufficient results is that without both bounds upon initial conditions and guarantees of excitation, potentially extreme transient excursions of system variables are possible even though global convergence and asymptotic performance are guaranteed.&lt; &gt;</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>Nonlinear control systems</subject><subject>Robustness</subject><subject>Signal analysis</subject><subject>Stability</subject><subject>Transient response</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKvg2dMeRLxsTSYfmxyl-AUFL_UcstkEVrabmtkK_feubOm1p2GYh4d3XkJuGV0wRs2TWUDFuaJnZMak1CVI4OdkRinTpQGtLskV4ve4KiHYjJTr7HpsQz8Uddr1DRYx5cI1bju0v6HwqR9y6grc4xA2eE0uousw3BzmnHy9vqyX7-Xq8-1j-bwqPVdqKAUTQiqjYi0MUzUXrJHOeRgzeBliA4YKznntIGoXteSu5lBJ0UhglFPG5-Rh8m5z-tkFHOymRR-6zvUh7dCOAs2ggtOgVhWtlDoNVqDHDHoEHyfQ54SYQ7Tb3G5c3ltG7X_D1tip4RG9PzgdetfFsUnf4pHnBpSC_2fuJqwNIRyvB8cf4Ih_9A</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Zhuquan Zang</creator><creator>Bitmead, R.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199401</creationdate><title>Transient bounds for adaptive control systems</title><author>Zhuquan Zang ; Bitmead, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>Nonlinear control systems</topic><topic>Robustness</topic><topic>Signal analysis</topic><topic>Stability</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuquan Zang</creatorcontrib><creatorcontrib>Bitmead, R.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuquan Zang</au><au>Bitmead, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient bounds for adaptive control systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1994-01</date><risdate>1994</risdate><volume>39</volume><issue>1</issue><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>Adaptive control systems are essentially nonlinear and mechanisms to analyze their stability and transient response typically derive from more general nonlinear theories such as small gain arguments or passivity. In this note, we consider how these theories may be applied to adaptive control to quantify transient response. This involves the explicit description of the constants appearing in the passivity theorem and/or the small gain theorem which characterize both system gains and initial condition effects. The result is a fundamental connection between transient response bounds and uniform plant controllability, which connects initial state conditions with the input-output analysis. Applying these general theorems to adaptive control, we are able to interpret the uniform controllability condition as a persistency of excitation requirement and thereby to provide local bounds on transient response. The implication of these sufficient results is that without both bounds upon initial conditions and guarantees of excitation, potentially extreme transient excursions of system variables are possible even though global convergence and asymptotic performance are guaranteed.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.273360</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1994-01, Vol.39 (1), p.171-175
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29081272
source IEEE Electronic Library (IEL) Journals
subjects Adaptative systems
Adaptive control
Adaptive systems
Applied sciences
Computer science
control theory
systems
Control systems
Control theory. Systems
Controllability
Error correction
Exact sciences and technology
Nonlinear control systems
Robustness
Signal analysis
Stability
Transient response
title Transient bounds for adaptive control systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T10%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20bounds%20for%20adaptive%20control%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhuquan%20Zang&rft.date=1994-01&rft.volume=39&rft.issue=1&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.273360&rft_dat=%3Cproquest_cross%3E28670766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-41445696fb4916b341d5aac2018c5efd2904333ba2f8af853ab32754d52103013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27283278&rft_id=info:pmid/&rft_ieee_id=273360&rfr_iscdi=true