Loading…

Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage

Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, s...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-10, Vol.14 (42), p.9412-9423
Main Authors: Vattikuti, S. V. Prabhakar, Hoang Ngoc, Cam Tu, Nguyen, Hoa, Nguyen Thi, Nam Hai, Shim, Jaesool, Dang, Nam Nguyen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9423
container_issue 42
container_start_page 9412
container_title The journal of physical chemistry letters
container_volume 14
creator Vattikuti, S. V. Prabhakar
Hoang Ngoc, Cam Tu
Nguyen, Hoa
Nguyen Thi, Nam Hai
Shim, Jaesool
Dang, Nam Nguyen
description Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.
doi_str_mv 10.1021/acs.jpclett.3c02030
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877380513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877380513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1791-1d4a89b075a87a6428772a5ff154cd2f6411c3eb5dbd9b3b36379ca81dc6fc653</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqXwC1g8sqS14zh22EpUKFJFKwGz5a-0qdI42MmQf49LOzDd6X1Pp9MDwCNGM4xSPJc6zA6dbmzfz4hGKSLoCkxwkfGEYU6v__lbcBfCAaG8QJxNgC6lV66FH3Xva2Nh6YausSYq2WTPcAG3o3fNGOqQvMgQH4uu807qPaych6t6t0-21kd_lK22cDWqWAOXrfW7EX72zsudvQc3lWyCfbjoFHy_Lr_KVbLevL2Xi3UiMStwgk0meaEQo5IzmWcpZyyVtKowzbRJqzzDWBOrqFGmUESRnLBCS46NziudUzIFT-feuPBnsKEXxzpo2zSytW4I4lRIOKKYxOj8HI3kxMENvo3DBEbihFP8Hc84xQUn-QUQg2ss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877380513</pqid></control><display><type>article</type><title>Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Vattikuti, S. V. Prabhakar ; Hoang Ngoc, Cam Tu ; Nguyen, Hoa ; Nguyen Thi, Nam Hai ; Shim, Jaesool ; Dang, Nam Nguyen</creator><creatorcontrib>Vattikuti, S. V. Prabhakar ; Hoang Ngoc, Cam Tu ; Nguyen, Hoa ; Nguyen Thi, Nam Hai ; Shim, Jaesool ; Dang, Nam Nguyen</creatorcontrib><description>Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02030</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2023-10, Vol.14 (42), p.9412-9423</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9009-5466 ; 0000-0001-6275-1879 ; 0000-0003-4434-0763 ; 0009-0006-0485-6350 ; 0009-0007-6351-514X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Vattikuti, S. V. Prabhakar</creatorcontrib><creatorcontrib>Hoang Ngoc, Cam Tu</creatorcontrib><creatorcontrib>Nguyen, Hoa</creatorcontrib><creatorcontrib>Nguyen Thi, Nam Hai</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Dang, Nam Nguyen</creatorcontrib><title>Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.</description><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAYhC0EEqXwC1g8sqS14zh22EpUKFJFKwGz5a-0qdI42MmQf49LOzDd6X1Pp9MDwCNGM4xSPJc6zA6dbmzfz4hGKSLoCkxwkfGEYU6v__lbcBfCAaG8QJxNgC6lV66FH3Xva2Nh6YausSYq2WTPcAG3o3fNGOqQvMgQH4uu807qPaych6t6t0-21kd_lK22cDWqWAOXrfW7EX72zsudvQc3lWyCfbjoFHy_Lr_KVbLevL2Xi3UiMStwgk0meaEQo5IzmWcpZyyVtKowzbRJqzzDWBOrqFGmUESRnLBCS46NziudUzIFT-feuPBnsKEXxzpo2zSytW4I4lRIOKKYxOj8HI3kxMENvo3DBEbihFP8Hc84xQUn-QUQg2ss</recordid><startdate>20231026</startdate><enddate>20231026</enddate><creator>Vattikuti, S. V. Prabhakar</creator><creator>Hoang Ngoc, Cam Tu</creator><creator>Nguyen, Hoa</creator><creator>Nguyen Thi, Nam Hai</creator><creator>Shim, Jaesool</creator><creator>Dang, Nam Nguyen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9009-5466</orcidid><orcidid>https://orcid.org/0000-0001-6275-1879</orcidid><orcidid>https://orcid.org/0000-0003-4434-0763</orcidid><orcidid>https://orcid.org/0009-0006-0485-6350</orcidid><orcidid>https://orcid.org/0009-0007-6351-514X</orcidid></search><sort><creationdate>20231026</creationdate><title>Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage</title><author>Vattikuti, S. V. Prabhakar ; Hoang Ngoc, Cam Tu ; Nguyen, Hoa ; Nguyen Thi, Nam Hai ; Shim, Jaesool ; Dang, Nam Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1791-1d4a89b075a87a6428772a5ff154cd2f6411c3eb5dbd9b3b36379ca81dc6fc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vattikuti, S. V. Prabhakar</creatorcontrib><creatorcontrib>Hoang Ngoc, Cam Tu</creatorcontrib><creatorcontrib>Nguyen, Hoa</creatorcontrib><creatorcontrib>Nguyen Thi, Nam Hai</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Dang, Nam Nguyen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vattikuti, S. V. Prabhakar</au><au>Hoang Ngoc, Cam Tu</au><au>Nguyen, Hoa</au><au>Nguyen Thi, Nam Hai</au><au>Shim, Jaesool</au><au>Dang, Nam Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-10-26</date><risdate>2023</risdate><volume>14</volume><issue>42</issue><spage>9412</spage><epage>9423</epage><pages>9412-9423</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Graphitic carbon nitride (CN) is a cost-effective and easily synthesized supercapacitor electrode material. However, its limited specific capacity has hindered its practical use. To address this, we developed a binary nanostructure by growing nanosized Co3O4 particles on CN. The CN-Co-2 composite, synthesized via thermal decomposition, exhibited a remarkable specific capacity of 280.64 C/g at 2 A/g. Even under prolonged cycling at 10.5 A/g, the retention rate exceeded 95%, demonstrating exceptional stability. In an asymmetric capacitor device, the CN-Co composite delivered 20.84 Wh/kg at 1000 W/kg, with a retention rate of 99.97% over 20,000 cycles, showcasing outstanding cycling stability. Controlled cobalt source adjustments yielded high-capacity electrode materials with battery-like behavior. This optimization strategy enhances energy density by retaining battery-like properties. In summary, the CN-Co composite is a promising, low-cost, easily synthesized electrode material with a high specific capacity and remarkable cycling stability, making it an attractive choice for energy storage applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c02030</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9009-5466</orcidid><orcidid>https://orcid.org/0000-0001-6275-1879</orcidid><orcidid>https://orcid.org/0000-0003-4434-0763</orcidid><orcidid>https://orcid.org/0009-0006-0485-6350</orcidid><orcidid>https://orcid.org/0009-0007-6351-514X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-10, Vol.14 (42), p.9412-9423
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2877380513
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Physical Insights into Energy Science
title Carbon Nitride Coupled Co3O4: A Pyrolysis-Based Approach for High-Performance Hybrid Energy Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T08%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nitride%20Coupled%20Co3O4:%20A%20Pyrolysis-Based%20Approach%20for%20High-Performance%20Hybrid%20Energy%20Storage&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Vattikuti,%20S.%20V.%20Prabhakar&rft.date=2023-10-26&rft.volume=14&rft.issue=42&rft.spage=9412&rft.epage=9423&rft.pages=9412-9423&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02030&rft_dat=%3Cproquest_acs_j%3E2877380513%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1791-1d4a89b075a87a6428772a5ff154cd2f6411c3eb5dbd9b3b36379ca81dc6fc653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2877380513&rft_id=info:pmid/&rfr_iscdi=true