Loading…
Characterization of indium-tin-oxide films with improved corrosion resistance
Triple‐junction amorphous silicon solar cells coated with indium‐tin‐oxide (ITO) can be used to produce hydrogen gas from water and sunlight. However, a major limitation in their use is the short lifetime due to corrosion of the ITO coating that forms the anode in photoelectrochemical devices. In th...
Saved in:
Published in: | Surface and interface analysis 2005-04, Vol.37 (4), p.385-392 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3 |
container_end_page | 392 |
container_issue | 4 |
container_start_page | 385 |
container_title | Surface and interface analysis |
container_volume | 37 |
creator | Gaarenstroom, Stephen W. Balogh, Michael P. Militello, Maria C. Waldo, Richard A. Wong, Curtis A. Kelly, Nelson A. Gibson, Thomas L. Kundrat, Matthew D. |
description | Triple‐junction amorphous silicon solar cells coated with indium‐tin‐oxide (ITO) can be used to produce hydrogen gas from water and sunlight. However, a major limitation in their use is the short lifetime due to corrosion of the ITO coating that forms the anode in photoelectrochemical devices. In this work, we compare corrosion rates for ITO film electrodes grown using different sputter deposition conditions. The corrosion resistance varied by more than a factor of 15, with the longest‐lasting film having a time‐to‐failure of 25 h. The films were characterized exhaustively by techniques including electron microscopy, electron spectroscopy, electron microprobe and x‐ray diffraction to determine composition, thickness and microstructure. The most corrosion‐resistant films had the most well‐formed crystals and showed the most crystal texturing. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sia.2010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28494122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28494122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3</originalsourceid><addsrcrecordid>eNp9kMtqG0EQRZsQQxTbkE-YTYw3Y1c_1NOzlEXkGL_ATtCyqempRp3Mw-4exY-vzwgJe5WsioJTh7qXsS8cTjiAOE0BTwRw-MAmHEqdlyU3H9kEuBK5UIJ_Yp9T-gUARho9YdfzFUZ0A8XwikPou6z3WejqsG7zIXR5_xxqynxo2pQ9hWGVhfYh9n-ozlwfY582F5FSSAN2jg7Ynscm0eFu7rOfi28_5t_zq9vzi_nsKndKGshReFRV6XTtqmmliGuEAmlKXBQaKyTpJTgBGrwzBnkNVa2FGTcvqCaU--xo6x1_eVxTGmwbkqOmwY76dbLCqFJxIUbw-L8g16bQUyOVekfdGCtF8vYhhhbji-VgN9XasVq7qXZEv-6smBw2Po7ZQ3rndcFlKTbKfMs9hYZe_umz9xeznXfHj3XS8xuP8bfVhSymdnlzbi-XZ4u78u7alvIvQ86X6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687658344</pqid></control><display><type>article</type><title>Characterization of indium-tin-oxide films with improved corrosion resistance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gaarenstroom, Stephen W. ; Balogh, Michael P. ; Militello, Maria C. ; Waldo, Richard A. ; Wong, Curtis A. ; Kelly, Nelson A. ; Gibson, Thomas L. ; Kundrat, Matthew D.</creator><creatorcontrib>Gaarenstroom, Stephen W. ; Balogh, Michael P. ; Militello, Maria C. ; Waldo, Richard A. ; Wong, Curtis A. ; Kelly, Nelson A. ; Gibson, Thomas L. ; Kundrat, Matthew D.</creatorcontrib><description>Triple‐junction amorphous silicon solar cells coated with indium‐tin‐oxide (ITO) can be used to produce hydrogen gas from water and sunlight. However, a major limitation in their use is the short lifetime due to corrosion of the ITO coating that forms the anode in photoelectrochemical devices. In this work, we compare corrosion rates for ITO film electrodes grown using different sputter deposition conditions. The corrosion resistance varied by more than a factor of 15, with the longest‐lasting film having a time‐to‐failure of 25 h. The films were characterized exhaustively by techniques including electron microscopy, electron spectroscopy, electron microprobe and x‐ray diffraction to determine composition, thickness and microstructure. The most corrosion‐resistant films had the most well‐formed crystals and showed the most crystal texturing. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.2010</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; Chemical composition analysis, chemical depth and dopant profiling ; Condensed matter: structure, mechanical and thermal properties ; Corrosion ; Corrosion tests ; Cross-disciplinary physics: materials science; rheology ; EIS ; EMPA ; Exact sciences and technology ; ITO ; Materials science ; Materials testing ; Metals. Metallurgy ; Physics ; SEM ; solar cell ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; XPS ; XRD</subject><ispartof>Surface and interface analysis, 2005-04, Vol.37 (4), p.385-392</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3</citedby><cites>FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,783,787,792,793,23942,23943,25152,27936,27937</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16713924$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaarenstroom, Stephen W.</creatorcontrib><creatorcontrib>Balogh, Michael P.</creatorcontrib><creatorcontrib>Militello, Maria C.</creatorcontrib><creatorcontrib>Waldo, Richard A.</creatorcontrib><creatorcontrib>Wong, Curtis A.</creatorcontrib><creatorcontrib>Kelly, Nelson A.</creatorcontrib><creatorcontrib>Gibson, Thomas L.</creatorcontrib><creatorcontrib>Kundrat, Matthew D.</creatorcontrib><title>Characterization of indium-tin-oxide films with improved corrosion resistance</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>Triple‐junction amorphous silicon solar cells coated with indium‐tin‐oxide (ITO) can be used to produce hydrogen gas from water and sunlight. However, a major limitation in their use is the short lifetime due to corrosion of the ITO coating that forms the anode in photoelectrochemical devices. In this work, we compare corrosion rates for ITO film electrodes grown using different sputter deposition conditions. The corrosion resistance varied by more than a factor of 15, with the longest‐lasting film having a time‐to‐failure of 25 h. The films were characterized exhaustively by techniques including electron microscopy, electron spectroscopy, electron microprobe and x‐ray diffraction to determine composition, thickness and microstructure. The most corrosion‐resistant films had the most well‐formed crystals and showed the most crystal texturing. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>Chemical composition analysis, chemical depth and dopant profiling</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Corrosion</subject><subject>Corrosion tests</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>EIS</subject><subject>EMPA</subject><subject>Exact sciences and technology</subject><subject>ITO</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>SEM</subject><subject>solar cell</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>XPS</subject><subject>XRD</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqG0EQRZsQQxTbkE-YTYw3Y1c_1NOzlEXkGL_ATtCyqempRp3Mw-4exY-vzwgJe5WsioJTh7qXsS8cTjiAOE0BTwRw-MAmHEqdlyU3H9kEuBK5UIJ_Yp9T-gUARho9YdfzFUZ0A8XwikPou6z3WejqsG7zIXR5_xxqynxo2pQ9hWGVhfYh9n-ozlwfY582F5FSSAN2jg7Ynscm0eFu7rOfi28_5t_zq9vzi_nsKndKGshReFRV6XTtqmmliGuEAmlKXBQaKyTpJTgBGrwzBnkNVa2FGTcvqCaU--xo6x1_eVxTGmwbkqOmwY76dbLCqFJxIUbw-L8g16bQUyOVekfdGCtF8vYhhhbji-VgN9XasVq7qXZEv-6smBw2Po7ZQ3rndcFlKTbKfMs9hYZe_umz9xeznXfHj3XS8xuP8bfVhSymdnlzbi-XZ4u78u7alvIvQ86X6Q</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Gaarenstroom, Stephen W.</creator><creator>Balogh, Michael P.</creator><creator>Militello, Maria C.</creator><creator>Waldo, Richard A.</creator><creator>Wong, Curtis A.</creator><creator>Kelly, Nelson A.</creator><creator>Gibson, Thomas L.</creator><creator>Kundrat, Matthew D.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8FD</scope><scope>JG9</scope><scope>7QQ</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200504</creationdate><title>Characterization of indium-tin-oxide films with improved corrosion resistance</title><author>Gaarenstroom, Stephen W. ; Balogh, Michael P. ; Militello, Maria C. ; Waldo, Richard A. ; Wong, Curtis A. ; Kelly, Nelson A. ; Gibson, Thomas L. ; Kundrat, Matthew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical composition analysis, chemical depth and dopant profiling</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Corrosion</topic><topic>Corrosion tests</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>EIS</topic><topic>EMPA</topic><topic>Exact sciences and technology</topic><topic>ITO</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>SEM</topic><topic>solar cell</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>XPS</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaarenstroom, Stephen W.</creatorcontrib><creatorcontrib>Balogh, Michael P.</creatorcontrib><creatorcontrib>Militello, Maria C.</creatorcontrib><creatorcontrib>Waldo, Richard A.</creatorcontrib><creatorcontrib>Wong, Curtis A.</creatorcontrib><creatorcontrib>Kelly, Nelson A.</creatorcontrib><creatorcontrib>Gibson, Thomas L.</creatorcontrib><creatorcontrib>Kundrat, Matthew D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaarenstroom, Stephen W.</au><au>Balogh, Michael P.</au><au>Militello, Maria C.</au><au>Waldo, Richard A.</au><au>Wong, Curtis A.</au><au>Kelly, Nelson A.</au><au>Gibson, Thomas L.</au><au>Kundrat, Matthew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of indium-tin-oxide films with improved corrosion resistance</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2005-04</date><risdate>2005</risdate><volume>37</volume><issue>4</issue><spage>385</spage><epage>392</epage><pages>385-392</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>Triple‐junction amorphous silicon solar cells coated with indium‐tin‐oxide (ITO) can be used to produce hydrogen gas from water and sunlight. However, a major limitation in their use is the short lifetime due to corrosion of the ITO coating that forms the anode in photoelectrochemical devices. In this work, we compare corrosion rates for ITO film electrodes grown using different sputter deposition conditions. The corrosion resistance varied by more than a factor of 15, with the longest‐lasting film having a time‐to‐failure of 25 h. The films were characterized exhaustively by techniques including electron microscopy, electron spectroscopy, electron microprobe and x‐ray diffraction to determine composition, thickness and microstructure. The most corrosion‐resistant films had the most well‐formed crystals and showed the most crystal texturing. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/sia.2010</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2005-04, Vol.37 (4), p.385-392 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_proquest_miscellaneous_28494122 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences Chemical composition analysis, chemical depth and dopant profiling Condensed matter: structure, mechanical and thermal properties Corrosion Corrosion tests Cross-disciplinary physics: materials science rheology EIS EMPA Exact sciences and technology ITO Materials science Materials testing Metals. Metallurgy Physics SEM solar cell Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology XPS XRD |
title | Characterization of indium-tin-oxide films with improved corrosion resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T16%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20indium-tin-oxide%20films%20with%20improved%20corrosion%20resistance&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Gaarenstroom,%20Stephen%20W.&rft.date=2005-04&rft.volume=37&rft.issue=4&rft.spage=385&rft.epage=392&rft.pages=385-392&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.2010&rft_dat=%3Cproquest_cross%3E28494122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-a2fa4b9c6dcb5b4e16a07ae5e1276abae3f30c2060fc88a1d0bd6280fcf2edea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1687658344&rft_id=info:pmid/&rfr_iscdi=true |