Loading…

GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis

Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance (“ferroptos...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-07, Vol.17 (14), p.13792-13810
Main Authors: Yue, Renye, Zhou, Mengjie, Li, Xu, Xu, Li, Lu, Chang, Dong, Zhe, Lei, Lingling, Liu, Huiyi, Guan, Guoqiang, Liu, Qin, Zhang, Xiao-Bing, Song, Guosheng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3
cites cdi_FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3
container_end_page 13810
container_issue 14
container_start_page 13792
container_title ACS nano
container_volume 17
creator Yue, Renye
Zhou, Mengjie
Li, Xu
Xu, Li
Lu, Chang
Dong, Zhe
Lei, Lingling
Liu, Huiyi
Guan, Guoqiang
Liu, Qin
Zhang, Xiao-Bing
Song, Guosheng
description Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance (“ferroptosis resistance”), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can “turn on” the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1’s functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.
doi_str_mv 10.1021/acsnano.3c03443
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839247400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839247400</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EolCY2ZBHJBRqx85rrEpLkXiJh8QW3do3JShxgp0gyq_H0MLGYns435F8CDni7IyzkI9AOQOmOROKCSnFFtnjmYgDlsbP23_viA_IvnOvjEVJmsS7ZCASGaWSJ3vk4-JhPhrfTTmdgFOgMRirrnyHDjW98ea2gq5obE39QS9rWJZmSR9f0EK7ovfoSteBUUjPVwbqUjkKRtOp-VzVGFyjLn9EYw2tlyKdobVN2zV-dkB2CqgcHm7uIXmaTR8n8-Dq9uJyMr4KQAjRBah0CKFmoFWhlMoSSHWRgIhTEUuZFkm6iKOF4sBDLWWs4zBTkU8BBWNKMBRDcrL2trZ569F1eV06hVUFBpve5WEqslAmkjGPjtaoso1zFou8tWUNdpVzln_nzje5801uvzjeyPtFjfqP_-3rgdM14Jf5a9Nb4__6r-4LJZSM0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839247400</pqid></control><display><type>article</type><title>GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yue, Renye ; Zhou, Mengjie ; Li, Xu ; Xu, Li ; Lu, Chang ; Dong, Zhe ; Lei, Lingling ; Liu, Huiyi ; Guan, Guoqiang ; Liu, Qin ; Zhang, Xiao-Bing ; Song, Guosheng</creator><creatorcontrib>Yue, Renye ; Zhou, Mengjie ; Li, Xu ; Xu, Li ; Lu, Chang ; Dong, Zhe ; Lei, Lingling ; Liu, Huiyi ; Guan, Guoqiang ; Liu, Qin ; Zhang, Xiao-Bing ; Song, Guosheng</creatorcontrib><description>Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance (“ferroptosis resistance”), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can “turn on” the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1’s functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c03443</identifier><identifier>PMID: 37458417</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-07, Vol.17 (14), p.13792-13810</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3</citedby><cites>FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3</cites><orcidid>0000-0001-5628-6245 ; 0000-0002-4010-0028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37458417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Renye</creatorcontrib><creatorcontrib>Zhou, Mengjie</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Dong, Zhe</creatorcontrib><creatorcontrib>Lei, Lingling</creatorcontrib><creatorcontrib>Liu, Huiyi</creatorcontrib><creatorcontrib>Guan, Guoqiang</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Zhang, Xiao-Bing</creatorcontrib><creatorcontrib>Song, Guosheng</creatorcontrib><title>GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance (“ferroptosis resistance”), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can “turn on” the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1’s functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EolCY2ZBHJBRqx85rrEpLkXiJh8QW3do3JShxgp0gyq_H0MLGYns435F8CDni7IyzkI9AOQOmOROKCSnFFtnjmYgDlsbP23_viA_IvnOvjEVJmsS7ZCASGaWSJ3vk4-JhPhrfTTmdgFOgMRirrnyHDjW98ea2gq5obE39QS9rWJZmSR9f0EK7ovfoSteBUUjPVwbqUjkKRtOp-VzVGFyjLn9EYw2tlyKdobVN2zV-dkB2CqgcHm7uIXmaTR8n8-Dq9uJyMr4KQAjRBah0CKFmoFWhlMoSSHWRgIhTEUuZFkm6iKOF4sBDLWWs4zBTkU8BBWNKMBRDcrL2trZ569F1eV06hVUFBpve5WEqslAmkjGPjtaoso1zFou8tWUNdpVzln_nzje5801uvzjeyPtFjfqP_-3rgdM14Jf5a9Nb4__6r-4LJZSM0w</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Yue, Renye</creator><creator>Zhou, Mengjie</creator><creator>Li, Xu</creator><creator>Xu, Li</creator><creator>Lu, Chang</creator><creator>Dong, Zhe</creator><creator>Lei, Lingling</creator><creator>Liu, Huiyi</creator><creator>Guan, Guoqiang</creator><creator>Liu, Qin</creator><creator>Zhang, Xiao-Bing</creator><creator>Song, Guosheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5628-6245</orcidid><orcidid>https://orcid.org/0000-0002-4010-0028</orcidid></search><sort><creationdate>20230725</creationdate><title>GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis</title><author>Yue, Renye ; Zhou, Mengjie ; Li, Xu ; Xu, Li ; Lu, Chang ; Dong, Zhe ; Lei, Lingling ; Liu, Huiyi ; Guan, Guoqiang ; Liu, Qin ; Zhang, Xiao-Bing ; Song, Guosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Renye</creatorcontrib><creatorcontrib>Zhou, Mengjie</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lu, Chang</creatorcontrib><creatorcontrib>Dong, Zhe</creatorcontrib><creatorcontrib>Lei, Lingling</creatorcontrib><creatorcontrib>Liu, Huiyi</creatorcontrib><creatorcontrib>Guan, Guoqiang</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><creatorcontrib>Zhang, Xiao-Bing</creatorcontrib><creatorcontrib>Song, Guosheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Renye</au><au>Zhou, Mengjie</au><au>Li, Xu</au><au>Xu, Li</au><au>Lu, Chang</au><au>Dong, Zhe</au><au>Lei, Lingling</au><au>Liu, Huiyi</au><au>Guan, Guoqiang</au><au>Liu, Qin</au><au>Zhang, Xiao-Bing</au><au>Song, Guosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>17</volume><issue>14</issue><spage>13792</spage><epage>13810</epage><pages>13792-13810</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Ferroptosis, as a type of programmed cell death process, enables effective damage to various cancer cells. However, we discovered that persistent oxidative stress during ferroptosis can upregulate the apurinic/apyrimidinic endonuclease 1 (APE1) protein that induces therapeutic resistance (“ferroptosis resistance”), resulting in an unsatisfactory treatment outcome. To address APE1-induced therapeutic resistance, we developed a GSH/APE1 cascade activated therapeutic nanoplatform (GAN). Specifically, the GAN is self-assembled by DNA-functionalized ultrasmall iron oxide nanoparticles and further loaded with drug molecules (drug-GAN). GSH-triggered GAN disassembly can “turn on” the catalysis of GAN to induce efficient lipid peroxidation (LPO) for ferroptosis toward the tumor, which could upregulate APE1 expression. Subsequently, upregulated APE1 can further trigger accurate drug release for overcoming ferroptosis resistance and inducing the recovery of near-infrared fluorescence for imaging the dynamics of APE1. Importantly, adaptive drug release can overcome the adverse effects of APE1 upregulation by boosting intracellular ROS yield and increasing DNA damage, to offset APE1’s functions of antioxidant and DNA repair, thus leading to adaptive ferroptosis. Moreover, with overexpressed GSH and upregulated APE1 in the tumor as stimuli, the therapeutic specificity of ferroptosis toward the tumor is greatly improved, which minimized nonspecific activation of catalysis and excessive drug release in normal tissues. Furthermore, a switchable MRI contrast from negative to positive is in sync with ferroptosis activation, which is beneficial for monitoring the ferroptosis process. Therefore, this adapted imaging and therapeutic nanoplatform can not only deliver GSH/APE1-activated lipid peroxide mediated adaptive synergistic therapy but also provided a switchable MRI/dual-channel fluorescence signal for monitoring ferroptosis activation, drug release, and therapy resistance dynamics in vivo, leading to high-specificity and high-efficiency adaptive ferroptosis therapy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37458417</pmid><doi>10.1021/acsnano.3c03443</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5628-6245</orcidid><orcidid>https://orcid.org/0000-0002-4010-0028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-07, Vol.17 (14), p.13792-13810
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2839247400
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T02%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSH/APE1%20Cascade-Activated%20Nanoplatform%20for%20Imaging%20Therapy%20Resistance%20Dynamics%20and%20Enzyme-Mediated%20Adaptive%20Ferroptosis&rft.jtitle=ACS%20nano&rft.au=Yue,%20Renye&rft.date=2023-07-25&rft.volume=17&rft.issue=14&rft.spage=13792&rft.epage=13810&rft.pages=13792-13810&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c03443&rft_dat=%3Cproquest_cross%3E2839247400%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-ecd2a2d0adcfccc97a8df7a36836448f78b65bc1a12d446d629c5344af00c30e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839247400&rft_id=info:pmid/37458417&rfr_iscdi=true