Loading…

Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity

Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2003-06, Vol.27 (8), p.747-756
Main Authors: Sun, Zhigao, Wang, Ruzhu, Ma, Rongsheng, Guo, Kaihua, Fan, Shuanshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3
cites cdi_FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3
container_end_page 756
container_issue 8
container_start_page 747
container_title International journal of energy research
container_volume 27
creator Sun, Zhigao
Wang, Ruzhu
Ma, Rongsheng
Guo, Kaihua
Fan, Shuanshi
description Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation reduced. Surfactants (an anionic surfactant, a non‐ionic surfactant and their mixtures) and liquid hydrocarbons (cyclopentane and methylcyclohexane) were used to improve hydrate formation. The experiments of hydrate formation were carried out in the pressure range 3.69–6.82 MPa and the temperature range 274.05–277.55 K. The experimental pressures were kept constant during hydrate formation in each experimental run. The effect of anionic surfactant (sodium dodecyl sulphate (SDS)) on natural gas storage in hydrates is more pronounced compared to a non‐ionic surfactant (dodecyl polysaccharide glycoside (DPG)). The induction time of hydrate formation was reduced with the presence of cyclopentane (CP). Cyclopentane and methylcyclohexane (MCH) could increase hydrate formation rate, but reduced hydrate storage capacity The higher methylcyclohexane concentration, the lower the hydrate storage capacity. Copyright © 2003 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/er.909
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27859994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14655390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3</originalsourceid><addsrcrecordid>eNqFkEFvFDEMhSMEEkuB35ALSBymOJtMMjmisi2tCogKRG_Bm3FKYHayTbKC_fdMOxU9IU6Wnz8_y4-x5wIOBcDyNeVDC_YBWwiwthFCXT5kC5BaNhbM5WP2pJQfANNMmAX7tgqBfOUp8LLLAX3FsRaOY8-HeL2LPf--73PymNdpLDyN_ArLrYaVeEh5gzVO6m17s1VqynhF3OMWfaz7p-xRwKHQs7t6wL4crz4fvWvOP56cHr05b7xqhW20tWRCb0QgMRWlwEogAQF7Of0BoEIb-q6jVgip7dKAWeuladdr8l1PJA_Yy9l3m9P1jkp1m1g8DQOOlHbFLU3XWmvVf0GhdNtKC_egz6mUTMFtc9xg3jsB7iZpR9lNSU_giztHLB6HkHH0sdzTqtNqvvxq5n7Fgfb_cHOri9mzmdlYKv3-y2L-6bSRpnVfP5y4T2fv9Vt50Tkt_wCe05pz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14655390</pqid></control><display><type>article</type><title>Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity</title><source>Wiley Online Library</source><creator>Sun, Zhigao ; Wang, Ruzhu ; Ma, Rongsheng ; Guo, Kaihua ; Fan, Shuanshi</creator><creatorcontrib>Sun, Zhigao ; Wang, Ruzhu ; Ma, Rongsheng ; Guo, Kaihua ; Fan, Shuanshi</creatorcontrib><description>Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation reduced. Surfactants (an anionic surfactant, a non‐ionic surfactant and their mixtures) and liquid hydrocarbons (cyclopentane and methylcyclohexane) were used to improve hydrate formation. The experiments of hydrate formation were carried out in the pressure range 3.69–6.82 MPa and the temperature range 274.05–277.55 K. The experimental pressures were kept constant during hydrate formation in each experimental run. The effect of anionic surfactant (sodium dodecyl sulphate (SDS)) on natural gas storage in hydrates is more pronounced compared to a non‐ionic surfactant (dodecyl polysaccharide glycoside (DPG)). The induction time of hydrate formation was reduced with the presence of cyclopentane (CP). Cyclopentane and methylcyclohexane (MCH) could increase hydrate formation rate, but reduced hydrate storage capacity The higher methylcyclohexane concentration, the lower the hydrate storage capacity. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.909</identifier><identifier>CODEN: IJERDN</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Applied sciences ; cyclopentane ; Energy ; Exact sciences and technology ; Fuels ; Gas characteristics and properties. Sampling. Analysis ; gas hydrate ; Gas industry ; MCH ; methane ; natural gas ; storage ; surfactant</subject><ispartof>International journal of energy research, 2003-06, Vol.27 (8), p.747-756</ispartof><rights>Copyright © 2003 John Wiley &amp; Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3</citedby><cites>FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.909$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.909$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14864994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhigao</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Ma, Rongsheng</creatorcontrib><creatorcontrib>Guo, Kaihua</creatorcontrib><creatorcontrib>Fan, Shuanshi</creatorcontrib><title>Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity</title><title>International journal of energy research</title><addtitle>Int. J. Energy Res</addtitle><description>Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation reduced. Surfactants (an anionic surfactant, a non‐ionic surfactant and their mixtures) and liquid hydrocarbons (cyclopentane and methylcyclohexane) were used to improve hydrate formation. The experiments of hydrate formation were carried out in the pressure range 3.69–6.82 MPa and the temperature range 274.05–277.55 K. The experimental pressures were kept constant during hydrate formation in each experimental run. The effect of anionic surfactant (sodium dodecyl sulphate (SDS)) on natural gas storage in hydrates is more pronounced compared to a non‐ionic surfactant (dodecyl polysaccharide glycoside (DPG)). The induction time of hydrate formation was reduced with the presence of cyclopentane (CP). Cyclopentane and methylcyclohexane (MCH) could increase hydrate formation rate, but reduced hydrate storage capacity The higher methylcyclohexane concentration, the lower the hydrate storage capacity. Copyright © 2003 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>cyclopentane</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas characteristics and properties. Sampling. Analysis</subject><subject>gas hydrate</subject><subject>Gas industry</subject><subject>MCH</subject><subject>methane</subject><subject>natural gas</subject><subject>storage</subject><subject>surfactant</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvFDEMhSMEEkuB35ALSBymOJtMMjmisi2tCogKRG_Bm3FKYHayTbKC_fdMOxU9IU6Wnz8_y4-x5wIOBcDyNeVDC_YBWwiwthFCXT5kC5BaNhbM5WP2pJQfANNMmAX7tgqBfOUp8LLLAX3FsRaOY8-HeL2LPf--73PymNdpLDyN_ArLrYaVeEh5gzVO6m17s1VqynhF3OMWfaz7p-xRwKHQs7t6wL4crz4fvWvOP56cHr05b7xqhW20tWRCb0QgMRWlwEogAQF7Of0BoEIb-q6jVgip7dKAWeuladdr8l1PJA_Yy9l3m9P1jkp1m1g8DQOOlHbFLU3XWmvVf0GhdNtKC_egz6mUTMFtc9xg3jsB7iZpR9lNSU_giztHLB6HkHH0sdzTqtNqvvxq5n7Fgfb_cHOri9mzmdlYKv3-y2L-6bSRpnVfP5y4T2fv9Vt50Tkt_wCe05pz</recordid><startdate>20030625</startdate><enddate>20030625</enddate><creator>Sun, Zhigao</creator><creator>Wang, Ruzhu</creator><creator>Ma, Rongsheng</creator><creator>Guo, Kaihua</creator><creator>Fan, Shuanshi</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030625</creationdate><title>Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity</title><author>Sun, Zhigao ; Wang, Ruzhu ; Ma, Rongsheng ; Guo, Kaihua ; Fan, Shuanshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>cyclopentane</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas characteristics and properties. Sampling. Analysis</topic><topic>gas hydrate</topic><topic>Gas industry</topic><topic>MCH</topic><topic>methane</topic><topic>natural gas</topic><topic>storage</topic><topic>surfactant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhigao</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Ma, Rongsheng</creatorcontrib><creatorcontrib>Guo, Kaihua</creatorcontrib><creatorcontrib>Fan, Shuanshi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhigao</au><au>Wang, Ruzhu</au><au>Ma, Rongsheng</au><au>Guo, Kaihua</au><au>Fan, Shuanshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity</atitle><jtitle>International journal of energy research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2003-06-25</date><risdate>2003</risdate><volume>27</volume><issue>8</issue><spage>747</spage><epage>756</epage><pages>747-756</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><coden>IJERDN</coden><notes>Chinese Jiangsu Province Education Committee Program - No. G0109199</notes><notes>istex:2C6D25D807D50BFF71D6A67FCF6517D3D011C2C4</notes><notes>Chinese Natural Science Foundation - No. 50176051</notes><notes>ark:/67375/WNG-QJM6D3R8-6</notes><notes>ArticleID:ER909</notes><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><abstract>Hydrate formation rate plays an important role in making hydrates for the storage and transport of natural gas. Micellar surfactant solutions were found to increase gas hydrate formation rate and storage capacity. With the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation reduced. Surfactants (an anionic surfactant, a non‐ionic surfactant and their mixtures) and liquid hydrocarbons (cyclopentane and methylcyclohexane) were used to improve hydrate formation. The experiments of hydrate formation were carried out in the pressure range 3.69–6.82 MPa and the temperature range 274.05–277.55 K. The experimental pressures were kept constant during hydrate formation in each experimental run. The effect of anionic surfactant (sodium dodecyl sulphate (SDS)) on natural gas storage in hydrates is more pronounced compared to a non‐ionic surfactant (dodecyl polysaccharide glycoside (DPG)). The induction time of hydrate formation was reduced with the presence of cyclopentane (CP). Cyclopentane and methylcyclohexane (MCH) could increase hydrate formation rate, but reduced hydrate storage capacity The higher methylcyclohexane concentration, the lower the hydrate storage capacity. Copyright © 2003 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/er.909</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2003-06, Vol.27 (8), p.747-756
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_miscellaneous_27859994
source Wiley Online Library
subjects Applied sciences
cyclopentane
Energy
Exact sciences and technology
Fuels
Gas characteristics and properties. Sampling. Analysis
gas hydrate
Gas industry
MCH
methane
natural gas
storage
surfactant
title Effect of surfactants and liquid hydrocarbons on gas hydrate formation rate and storage capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-29T22%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20surfactants%20and%20liquid%20hydrocarbons%20on%20gas%20hydrate%20formation%20rate%20and%20storage%20capacity&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Sun,%20Zhigao&rft.date=2003-06-25&rft.volume=27&rft.issue=8&rft.spage=747&rft.epage=756&rft.pages=747-756&rft.issn=0363-907X&rft.eissn=1099-114X&rft.coden=IJERDN&rft_id=info:doi/10.1002/er.909&rft_dat=%3Cproquest_cross%3E14655390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4519-699e7fd71fe1fd7440930e10fad3109004f5fd88e5113692707b6275bbec8dee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14655390&rft_id=info:pmid/&rfr_iscdi=true