Loading…
A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique
Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion flux...
Saved in:
Published in: | Journal of atmospheric and solar-terrestrial physics 2002-03, Vol.64 (5), p.657-660 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3 |
container_end_page | 660 |
container_issue | 5 |
container_start_page | 657 |
container_title | Journal of atmospheric and solar-terrestrial physics |
container_volume | 64 |
creator | Riazantseva, M.O. Dalin, P.A. Dmitriev, A.V. Orlov, Yu.V. Paularena, K.I. Richardson, J.D. Zastenker, G.N. |
description | Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion fluxes measured by three spatially separated spacecraft (IMP 8, WIND and INTERBALL-1) was one of the first steps in this direction. This paper describes a complex multifactor analysis of different physical, geometrical, and statistical parameters that control such correlations (considered separately and in combination). A linear-regression and an artificial neural network techniques are used for this analysis. The analysis is applied to an extensive array of correlation coefficients for the ion flux in the solar wind and provides estimates of the relative significance of the factors that control these correlation coefficients. The study shows that the most influential parameters are the solar wind density and the standard deviations of solar wind density, solar wind velocity and interplanetary magnetic field. This set of parameters permits us to develop a sufficiently accurate (with a relative error of less than a few per cent) quantitative model for the correlation between the ion fluxes measured on two spatially separated spacecraft. |
doi_str_mv | 10.1016/S1364-6826(02)00026-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27206426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364682602000263</els_id><sourcerecordid>18460590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3</originalsourceid><addsrcrecordid>eNqFkU1vFDEMhkcIJErhJyDlhOAwkK9mMidUVXxUqtRD23PkZhwIZJPFyVB64beT3aXnnmzZj1_LfofhteDvBRfmw5VQRo_GSvOWy3ecc2lG9WQ4EnaaR2GlftrzB-T58KLWHx2apDVHw99TtllTiwF8K8QgQ7qvsbIS2BYINtiQKvMlNyopxfyN1ZKA2F3MC4sls5DWP71PhAlaL1S21h0GmQF13egjJJZxpX1od4V-sob-e46_Vnw5PAuQKr76H4-Hm8-frs--jheXX87PTi9Gr8zcRmV4kIAzcjX5yQq1eBnQTEHwJSg0i0K0t3bWSoOWE0x85l4LATrgbG-9Oh7eHHS3VPra2twmVo8pQcayVicnyY2W5lFQWG34ycw7eHIAPZVaCYPbUtwA3TvB3c4Wt7fF7X7uuHR7W5zqcx8Pc9jP_R2RXPURs8clEvrmlhIfUfgHXf2X4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18460590</pqid></control><display><type>article</type><title>A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique</title><source>ScienceDirect Freedom Collection</source><creator>Riazantseva, M.O. ; Dalin, P.A. ; Dmitriev, A.V. ; Orlov, Yu.V. ; Paularena, K.I. ; Richardson, J.D. ; Zastenker, G.N.</creator><creatorcontrib>Riazantseva, M.O. ; Dalin, P.A. ; Dmitriev, A.V. ; Orlov, Yu.V. ; Paularena, K.I. ; Richardson, J.D. ; Zastenker, G.N.</creatorcontrib><description>Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion fluxes measured by three spatially separated spacecraft (IMP 8, WIND and INTERBALL-1) was one of the first steps in this direction. This paper describes a complex multifactor analysis of different physical, geometrical, and statistical parameters that control such correlations (considered separately and in combination). A linear-regression and an artificial neural network techniques are used for this analysis. The analysis is applied to an extensive array of correlation coefficients for the ion flux in the solar wind and provides estimates of the relative significance of the factors that control these correlation coefficients. The study shows that the most influential parameters are the solar wind density and the standard deviations of solar wind density, solar wind velocity and interplanetary magnetic field. This set of parameters permits us to develop a sufficiently accurate (with a relative error of less than a few per cent) quantitative model for the correlation between the ion fluxes measured on two spatially separated spacecraft.</description><identifier>ISSN: 1364-6826</identifier><identifier>EISSN: 1879-1824</identifier><identifier>DOI: 10.1016/S1364-6826(02)00026-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Ion fluxes ; Solar wind</subject><ispartof>Journal of atmospheric and solar-terrestrial physics, 2002-03, Vol.64 (5), p.657-660</ispartof><rights>2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3</citedby><cites>FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27936,27937</link.rule.ids></links><search><creatorcontrib>Riazantseva, M.O.</creatorcontrib><creatorcontrib>Dalin, P.A.</creatorcontrib><creatorcontrib>Dmitriev, A.V.</creatorcontrib><creatorcontrib>Orlov, Yu.V.</creatorcontrib><creatorcontrib>Paularena, K.I.</creatorcontrib><creatorcontrib>Richardson, J.D.</creatorcontrib><creatorcontrib>Zastenker, G.N.</creatorcontrib><title>A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique</title><title>Journal of atmospheric and solar-terrestrial physics</title><description>Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion fluxes measured by three spatially separated spacecraft (IMP 8, WIND and INTERBALL-1) was one of the first steps in this direction. This paper describes a complex multifactor analysis of different physical, geometrical, and statistical parameters that control such correlations (considered separately and in combination). A linear-regression and an artificial neural network techniques are used for this analysis. The analysis is applied to an extensive array of correlation coefficients for the ion flux in the solar wind and provides estimates of the relative significance of the factors that control these correlation coefficients. The study shows that the most influential parameters are the solar wind density and the standard deviations of solar wind density, solar wind velocity and interplanetary magnetic field. This set of parameters permits us to develop a sufficiently accurate (with a relative error of less than a few per cent) quantitative model for the correlation between the ion fluxes measured on two spatially separated spacecraft.</description><subject>Ion fluxes</subject><subject>Solar wind</subject><issn>1364-6826</issn><issn>1879-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vFDEMhkcIJErhJyDlhOAwkK9mMidUVXxUqtRD23PkZhwIZJPFyVB64beT3aXnnmzZj1_LfofhteDvBRfmw5VQRo_GSvOWy3ecc2lG9WQ4EnaaR2GlftrzB-T58KLWHx2apDVHw99TtllTiwF8K8QgQ7qvsbIS2BYINtiQKvMlNyopxfyN1ZKA2F3MC4sls5DWP71PhAlaL1S21h0GmQF13egjJJZxpX1od4V-sob-e46_Vnw5PAuQKr76H4-Hm8-frs--jheXX87PTi9Gr8zcRmV4kIAzcjX5yQq1eBnQTEHwJSg0i0K0t3bWSoOWE0x85l4LATrgbG-9Oh7eHHS3VPra2twmVo8pQcayVicnyY2W5lFQWG34ycw7eHIAPZVaCYPbUtwA3TvB3c4Wt7fF7X7uuHR7W5zqcx8Pc9jP_R2RXPURs8clEvrmlhIfUfgHXf2X4A</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Riazantseva, M.O.</creator><creator>Dalin, P.A.</creator><creator>Dmitriev, A.V.</creator><creator>Orlov, Yu.V.</creator><creator>Paularena, K.I.</creator><creator>Richardson, J.D.</creator><creator>Zastenker, G.N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20020301</creationdate><title>A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique</title><author>Riazantseva, M.O. ; Dalin, P.A. ; Dmitriev, A.V. ; Orlov, Yu.V. ; Paularena, K.I. ; Richardson, J.D. ; Zastenker, G.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Ion fluxes</topic><topic>Solar wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riazantseva, M.O.</creatorcontrib><creatorcontrib>Dalin, P.A.</creatorcontrib><creatorcontrib>Dmitriev, A.V.</creatorcontrib><creatorcontrib>Orlov, Yu.V.</creatorcontrib><creatorcontrib>Paularena, K.I.</creatorcontrib><creatorcontrib>Richardson, J.D.</creatorcontrib><creatorcontrib>Zastenker, G.N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riazantseva, M.O.</au><au>Dalin, P.A.</au><au>Dmitriev, A.V.</au><au>Orlov, Yu.V.</au><au>Paularena, K.I.</au><au>Richardson, J.D.</au><au>Zastenker, G.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique</atitle><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>64</volume><issue>5</issue><spage>657</spage><epage>660</epage><pages>657-660</pages><issn>1364-6826</issn><eissn>1879-1824</eissn><abstract>Solar wind plasma and magnetic field observations from multiple spacecraft can be used to separate temporal and spatial variations and to determine the accuracy of predictions of solar wind conditions near Earth based on distant-spacecraft measurements. The study of correlations between the ion fluxes measured by three spatially separated spacecraft (IMP 8, WIND and INTERBALL-1) was one of the first steps in this direction. This paper describes a complex multifactor analysis of different physical, geometrical, and statistical parameters that control such correlations (considered separately and in combination). A linear-regression and an artificial neural network techniques are used for this analysis. The analysis is applied to an extensive array of correlation coefficients for the ion flux in the solar wind and provides estimates of the relative significance of the factors that control these correlation coefficients. The study shows that the most influential parameters are the solar wind density and the standard deviations of solar wind density, solar wind velocity and interplanetary magnetic field. This set of parameters permits us to develop a sufficiently accurate (with a relative error of less than a few per cent) quantitative model for the correlation between the ion fluxes measured on two spatially separated spacecraft.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1364-6826(02)00026-3</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-6826 |
ispartof | Journal of atmospheric and solar-terrestrial physics, 2002-03, Vol.64 (5), p.657-660 |
issn | 1364-6826 1879-1824 |
language | eng |
recordid | cdi_proquest_miscellaneous_27206426 |
source | ScienceDirect Freedom Collection |
subjects | Ion fluxes Solar wind |
title | A multifactor analysis of parameters controlling solar wind ion flux correlations using an artificial neural network technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-13T15%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multifactor%20analysis%20of%20parameters%20controlling%20solar%20wind%20ion%20flux%20correlations%20using%20an%20artificial%20neural%20network%20technique&rft.jtitle=Journal%20of%20atmospheric%20and%20solar-terrestrial%20physics&rft.au=Riazantseva,%20M.O.&rft.date=2002-03-01&rft.volume=64&rft.issue=5&rft.spage=657&rft.epage=660&rft.pages=657-660&rft.issn=1364-6826&rft.eissn=1879-1824&rft_id=info:doi/10.1016/S1364-6826(02)00026-3&rft_dat=%3Cproquest_cross%3E18460590%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-360f2ae9e037c7813dc2fe67f10df3e6d3ee8b89434a427a7090c411a4fe98bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18460590&rft_id=info:pmid/&rfr_iscdi=true |