Loading…

Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage

Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio‐imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated t...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-05, Vol.18 (18), p.e2200464-n/a
Main Authors: Pilch‐Wrobel, Aleksandra, Kotulska, Agata Maria, Lahtinen, Satu, Soukka, Tero, Bednarkiewicz, Artur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23
cites cdi_FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23
container_end_page n/a
container_issue 18
container_start_page e2200464
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Pilch‐Wrobel, Aleksandra
Kotulska, Agata Maria
Lahtinen, Satu
Soukka, Tero
Bednarkiewicz, Artur
description Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio‐imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo‐bleaching, spectral cross‐excitation, and emission bleed‐through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay‐based analysis of D‐A interaction. In this work, the assessment of designed virtual core‐shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy‐transfer and energy migration between lanthanide ion dopants and how the architecture of core‐shell UCNPs affects their performance as FRET donors to organic acceptor dyes. The compositional architecture of lanthanide‐doped upconverting core‐shell nanoparticles (UCNPs) strongly affects their suitability for Resonant Energy Transfer (RET) based sensing. The upconversion (UC) in lanthanides advantageously diminishes background signal, but concurrently complicates luminescence kinetics analysis. Newly suggested RET quantification methods exploit long luminescence risetimes of the donor and fluorescent acceptor molecules to understand the mechanisms behind and propose optimized donor NPs.
doi_str_mv 10.1002/smll.202200464
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2645857045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645857045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSMEoqWwZYksselmBsd2nJhdNZ0CUkolZrqOHOc54yqxg52AZtdP4NP4Br4ERzMMEhtWtnTPu75-N0lep3iZYkzehb7rlgQTgjHj7ElynvKULnhBxNPTPcVnyYsQHjCmKWH58-SMZjTLaCHOk59r2xoL4I1t0bgDtHL94IIZjbOyQ1de7cwIapw8IKej6uHX44_NDroO3Q_K2W_gx3m2lHbcSWuaWb92AzTos7RukFFWHQSknUd3w2j6aFtOfXw0KLAjunY2KsaiLxDim1YBWlvw7R5tvbRBg3-PtjHYWuuYI8wpjvqtab2cgyJpG7QZnZctvEyeadkFeHU8L5L7m_V29XFR3n34tLoqF4qllC1UjRkhSilKaYZpUaSc64ZrIfMamBSCC61zXWCMhSQccsE5ywkrap2nsib0Irk8-A7efZ0gjFVv4oe6TlpwU6gIZ1mR5ZhlEX37D_rgJh_XO1OZYHlGRRGp5YFS3oXgQVeDj8vy-yrF1dx1NXddnbqOA2-OtlPdQ3PC_5QbAXEAvpsO9v-xqza3ZfnX_DcnFrup</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659475398</pqid></control><display><type>article</type><title>Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pilch‐Wrobel, Aleksandra ; Kotulska, Agata Maria ; Lahtinen, Satu ; Soukka, Tero ; Bednarkiewicz, Artur</creator><creatorcontrib>Pilch‐Wrobel, Aleksandra ; Kotulska, Agata Maria ; Lahtinen, Satu ; Soukka, Tero ; Bednarkiewicz, Artur</creatorcontrib><description>Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio‐imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo‐bleaching, spectral cross‐excitation, and emission bleed‐through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay‐based analysis of D‐A interaction. In this work, the assessment of designed virtual core‐shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy‐transfer and energy migration between lanthanide ion dopants and how the architecture of core‐shell UCNPs affects their performance as FRET donors to organic acceptor dyes. The compositional architecture of lanthanide‐doped upconverting core‐shell nanoparticles (UCNPs) strongly affects their suitability for Resonant Energy Transfer (RET) based sensing. The upconversion (UC) in lanthanides advantageously diminishes background signal, but concurrently complicates luminescence kinetics analysis. Newly suggested RET quantification methods exploit long luminescence risetimes of the donor and fluorescent acceptor molecules to understand the mechanisms behind and propose optimized donor NPs.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202200464</identifier><identifier>PMID: 35355389</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>biosensors ; Bleaching ; Decay ; Energy storage ; Energy transfer ; Erbium ; Excitation spectra ; Fluorescence Resonance Energy Transfer - methods ; Förster resonance energy transfer ; Ions ; lanthanide doped nanoparticles ; Lanthanoid Series Elements ; Luminescence ; Nanoparticles ; Nanotechnology ; photon upconversion ; Resonance ; Ytterbium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-05, Vol.18 (18), p.e2200464-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23</citedby><cites>FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23</cites><orcidid>0000-0001-6335-9537 ; 0000-0003-4113-0365 ; 0000-0002-1144-6724 ; 0000-0003-2816-7809 ; 0000-0003-1991-4008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,783,787,27938,27939</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35355389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pilch‐Wrobel, Aleksandra</creatorcontrib><creatorcontrib>Kotulska, Agata Maria</creatorcontrib><creatorcontrib>Lahtinen, Satu</creatorcontrib><creatorcontrib>Soukka, Tero</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><title>Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio‐imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo‐bleaching, spectral cross‐excitation, and emission bleed‐through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay‐based analysis of D‐A interaction. In this work, the assessment of designed virtual core‐shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy‐transfer and energy migration between lanthanide ion dopants and how the architecture of core‐shell UCNPs affects their performance as FRET donors to organic acceptor dyes. The compositional architecture of lanthanide‐doped upconverting core‐shell nanoparticles (UCNPs) strongly affects their suitability for Resonant Energy Transfer (RET) based sensing. The upconversion (UC) in lanthanides advantageously diminishes background signal, but concurrently complicates luminescence kinetics analysis. Newly suggested RET quantification methods exploit long luminescence risetimes of the donor and fluorescent acceptor molecules to understand the mechanisms behind and propose optimized donor NPs.</description><subject>biosensors</subject><subject>Bleaching</subject><subject>Decay</subject><subject>Energy storage</subject><subject>Energy transfer</subject><subject>Erbium</subject><subject>Excitation spectra</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Förster resonance energy transfer</subject><subject>Ions</subject><subject>lanthanide doped nanoparticles</subject><subject>Lanthanoid Series Elements</subject><subject>Luminescence</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>photon upconversion</subject><subject>Resonance</subject><subject>Ytterbium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSMEoqWwZYksselmBsd2nJhdNZ0CUkolZrqOHOc54yqxg52AZtdP4NP4Br4ERzMMEhtWtnTPu75-N0lep3iZYkzehb7rlgQTgjHj7ElynvKULnhBxNPTPcVnyYsQHjCmKWH58-SMZjTLaCHOk59r2xoL4I1t0bgDtHL94IIZjbOyQ1de7cwIapw8IKej6uHX44_NDroO3Q_K2W_gx3m2lHbcSWuaWb92AzTos7RukFFWHQSknUd3w2j6aFtOfXw0KLAjunY2KsaiLxDim1YBWlvw7R5tvbRBg3-PtjHYWuuYI8wpjvqtab2cgyJpG7QZnZctvEyeadkFeHU8L5L7m_V29XFR3n34tLoqF4qllC1UjRkhSilKaYZpUaSc64ZrIfMamBSCC61zXWCMhSQccsE5ywkrap2nsib0Irk8-A7efZ0gjFVv4oe6TlpwU6gIZ1mR5ZhlEX37D_rgJh_XO1OZYHlGRRGp5YFS3oXgQVeDj8vy-yrF1dx1NXddnbqOA2-OtlPdQ3PC_5QbAXEAvpsO9v-xqza3ZfnX_DcnFrup</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Pilch‐Wrobel, Aleksandra</creator><creator>Kotulska, Agata Maria</creator><creator>Lahtinen, Satu</creator><creator>Soukka, Tero</creator><creator>Bednarkiewicz, Artur</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-1144-6724</orcidid><orcidid>https://orcid.org/0000-0003-2816-7809</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid></search><sort><creationdate>20220501</creationdate><title>Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage</title><author>Pilch‐Wrobel, Aleksandra ; Kotulska, Agata Maria ; Lahtinen, Satu ; Soukka, Tero ; Bednarkiewicz, Artur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biosensors</topic><topic>Bleaching</topic><topic>Decay</topic><topic>Energy storage</topic><topic>Energy transfer</topic><topic>Erbium</topic><topic>Excitation spectra</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Förster resonance energy transfer</topic><topic>Ions</topic><topic>lanthanide doped nanoparticles</topic><topic>Lanthanoid Series Elements</topic><topic>Luminescence</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>photon upconversion</topic><topic>Resonance</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilch‐Wrobel, Aleksandra</creatorcontrib><creatorcontrib>Kotulska, Agata Maria</creatorcontrib><creatorcontrib>Lahtinen, Satu</creatorcontrib><creatorcontrib>Soukka, Tero</creatorcontrib><creatorcontrib>Bednarkiewicz, Artur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilch‐Wrobel, Aleksandra</au><au>Kotulska, Agata Maria</au><au>Lahtinen, Satu</au><au>Soukka, Tero</au><au>Bednarkiewicz, Artur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>18</volume><issue>18</issue><spage>e2200464</spage><epage>n/a</epage><pages>e2200464-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio‐imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo‐bleaching, spectral cross‐excitation, and emission bleed‐through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay‐based analysis of D‐A interaction. In this work, the assessment of designed virtual core‐shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy‐transfer and energy migration between lanthanide ion dopants and how the architecture of core‐shell UCNPs affects their performance as FRET donors to organic acceptor dyes. The compositional architecture of lanthanide‐doped upconverting core‐shell nanoparticles (UCNPs) strongly affects their suitability for Resonant Energy Transfer (RET) based sensing. The upconversion (UC) in lanthanides advantageously diminishes background signal, but concurrently complicates luminescence kinetics analysis. Newly suggested RET quantification methods exploit long luminescence risetimes of the donor and fluorescent acceptor molecules to understand the mechanisms behind and propose optimized donor NPs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35355389</pmid><doi>10.1002/smll.202200464</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6335-9537</orcidid><orcidid>https://orcid.org/0000-0003-4113-0365</orcidid><orcidid>https://orcid.org/0000-0002-1144-6724</orcidid><orcidid>https://orcid.org/0000-0003-2816-7809</orcidid><orcidid>https://orcid.org/0000-0003-1991-4008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-05, Vol.18 (18), p.e2200464-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2645857045
source Wiley-Blackwell Read & Publish Collection
subjects biosensors
Bleaching
Decay
Energy storage
Energy transfer
Erbium
Excitation spectra
Fluorescence Resonance Energy Transfer - methods
Förster resonance energy transfer
Ions
lanthanide doped nanoparticles
Lanthanoid Series Elements
Luminescence
Nanoparticles
Nanotechnology
photon upconversion
Resonance
Ytterbium
title Engineering the Compositional Architecture of Core‐Shell Upconverting Lanthanide‐Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-01T22%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Compositional%20Architecture%20of%20Core%E2%80%90Shell%20Upconverting%20Lanthanide%E2%80%90Doped%20Nanoparticles%20for%20Optimal%20Luminescent%20Donor%20in%20Resonance%20Energy%20Transfer:%20The%20Effects%20of%20Energy%20Migration%20and%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Pilch%E2%80%90Wrobel,%20Aleksandra&rft.date=2022-05-01&rft.volume=18&rft.issue=18&rft.spage=e2200464&rft.epage=n/a&rft.pages=e2200464-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202200464&rft_dat=%3Cproquest_cross%3E2645857045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4134-cb0422ccc33350388166fd6f9a7be4a9969ff7f80009a26e796647248bf71ab23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659475398&rft_id=info:pmid/35355389&rfr_iscdi=true