Loading…

VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset

In this paper, we have presented a novel deep neural network architecture involving transfer learning approach, formed by freezing and concatenating all the layers till block4 pool layer of VGG16 pre-trained model (at the lower level) with the layers of a randomly initialized naïve Inception block m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2023-01, Vol.20 (1), p.752-762
Main Authors: Saini, Manisha, Susan, Seba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23
cites cdi_FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23
container_end_page 762
container_issue 1
container_start_page 752
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 20
creator Saini, Manisha
Susan, Seba
description In this paper, we have presented a novel deep neural network architecture involving transfer learning approach, formed by freezing and concatenating all the layers till block4 pool layer of VGG16 pre-trained model (at the lower level) with the layers of a randomly initialized naïve Inception block module (at the higher level). Further, we have added the batch normalization, flatten, dropout and dense layers in the proposed architecture. Our transfer network, called VGGIN-Net, facilitates the transfer of domain knowledge from the larger ImageNet object dataset to the smaller imbalanced breast cancer dataset. To improve the performance of the proposed model, regularization was used in the form of dropout and data augmentation. A detailed block-wise fine tuning has been conducted on the proposed deep transfer network for images of different magnification factors. The results of extensive experiments indicate a significant improvement of classification performance after the application of fine-tuning. The proposed deep learning architecture with transfer learning and fine-tuning yields the highest accuracies in comparison to other state-of-the-art approaches for the classification of BreakHis breast cancer dataset. The articulated architecture is designed in a way that it can be effectively transfer learned on other breast cancer datasets.
doi_str_mv 10.1109/TCBB.2022.3163277
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2645470814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9744541</ieee_id><sourcerecordid>2773453419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23</originalsourceid><addsrcrecordid>eNpdkE1PAjEQhhujEUR_gDExTbx4WezndutNFkQSghf02nS7swkILLa7Mf57uwE9eOrHPDPz5kHompIhpUQ_LPPRaMgIY0NOU86UOkF9KqVKtE7FaXcXMpE65T10EcKaECY0EeeoxyUXWgjdR5P36XS2SBbQPOIxwB4vvd2FCjyOX1-1_8BV7fFsW9iN3Tko8ciDDQ3Ou5fHY9vYAM0lOqvsJsDV8Rygt-fJMn9J5q_TWf40T1zc1yRMsUxyZ60jBSFUukI4pYXKICtYJaTkmnBlaaYUqzKnpOaxUNqyohk4x_gA3R_m7n392UJozHYVHGxiNqjbYFgqpFAkoyKid__Qdd36XUxnoiguogGqI0UPlPN1CB4qs_errfXfhhLTOTadY9M5NkfHsef2OLkttlD-dfxKjcDNAVgBwF9ZKxHDUf4DjM18sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773453419</pqid></control><display><type>article</type><title>VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Saini, Manisha ; Susan, Seba</creator><creatorcontrib>Saini, Manisha ; Susan, Seba</creatorcontrib><description>In this paper, we have presented a novel deep neural network architecture involving transfer learning approach, formed by freezing and concatenating all the layers till block4 pool layer of VGG16 pre-trained model (at the lower level) with the layers of a randomly initialized naïve Inception block module (at the higher level). Further, we have added the batch normalization, flatten, dropout and dense layers in the proposed architecture. Our transfer network, called VGGIN-Net, facilitates the transfer of domain knowledge from the larger ImageNet object dataset to the smaller imbalanced breast cancer dataset. To improve the performance of the proposed model, regularization was used in the form of dropout and data augmentation. A detailed block-wise fine tuning has been conducted on the proposed deep transfer network for images of different magnification factors. The results of extensive experiments indicate a significant improvement of classification performance after the application of fine-tuning. The proposed deep learning architecture with transfer learning and fine-tuning yields the highest accuracies in comparison to other state-of-the-art approaches for the classification of BreakHis breast cancer dataset. The articulated architecture is designed in a way that it can be effectively transfer learned on other breast cancer datasets.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2022.3163277</identifier><identifier>PMID: 35349449</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Classification ; Computer architecture ; convolutional neural networks ; Datasets ; Deep learning ; Feature extraction ; Female ; fine tuning ; Freezing ; Humans ; Inception module ; Knowledge management ; Machine learning ; Neural networks ; Neural Networks, Computer ; Performance enhancement ; pre-trained model ; Regularization ; Task analysis ; Transfer learning ; VGG16</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-01, Vol.20 (1), p.752-762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23</citedby><cites>FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23</cites><orcidid>0000-0002-6709-6591 ; 0000-0003-4807-6787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9744541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,55147</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35349449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saini, Manisha</creatorcontrib><creatorcontrib>Susan, Seba</creatorcontrib><title>VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>In this paper, we have presented a novel deep neural network architecture involving transfer learning approach, formed by freezing and concatenating all the layers till block4 pool layer of VGG16 pre-trained model (at the lower level) with the layers of a randomly initialized naïve Inception block module (at the higher level). Further, we have added the batch normalization, flatten, dropout and dense layers in the proposed architecture. Our transfer network, called VGGIN-Net, facilitates the transfer of domain knowledge from the larger ImageNet object dataset to the smaller imbalanced breast cancer dataset. To improve the performance of the proposed model, regularization was used in the form of dropout and data augmentation. A detailed block-wise fine tuning has been conducted on the proposed deep transfer network for images of different magnification factors. The results of extensive experiments indicate a significant improvement of classification performance after the application of fine-tuning. The proposed deep learning architecture with transfer learning and fine-tuning yields the highest accuracies in comparison to other state-of-the-art approaches for the classification of BreakHis breast cancer dataset. The articulated architecture is designed in a way that it can be effectively transfer learned on other breast cancer datasets.</description><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Female</subject><subject>fine tuning</subject><subject>Freezing</subject><subject>Humans</subject><subject>Inception module</subject><subject>Knowledge management</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Performance enhancement</subject><subject>pre-trained model</subject><subject>Regularization</subject><subject>Task analysis</subject><subject>Transfer learning</subject><subject>VGG16</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PAjEQhhujEUR_gDExTbx4WezndutNFkQSghf02nS7swkILLa7Mf57uwE9eOrHPDPz5kHompIhpUQ_LPPRaMgIY0NOU86UOkF9KqVKtE7FaXcXMpE65T10EcKaECY0EeeoxyUXWgjdR5P36XS2SBbQPOIxwB4vvd2FCjyOX1-1_8BV7fFsW9iN3Tko8ciDDQ3Ou5fHY9vYAM0lOqvsJsDV8Rygt-fJMn9J5q_TWf40T1zc1yRMsUxyZ60jBSFUukI4pYXKICtYJaTkmnBlaaYUqzKnpOaxUNqyohk4x_gA3R_m7n392UJozHYVHGxiNqjbYFgqpFAkoyKid__Qdd36XUxnoiguogGqI0UPlPN1CB4qs_errfXfhhLTOTadY9M5NkfHsef2OLkttlD-dfxKjcDNAVgBwF9ZKxHDUf4DjM18sQ</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Saini, Manisha</creator><creator>Susan, Seba</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6709-6591</orcidid><orcidid>https://orcid.org/0000-0003-4807-6787</orcidid></search><sort><creationdate>202301</creationdate><title>VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset</title><author>Saini, Manisha ; Susan, Seba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Female</topic><topic>fine tuning</topic><topic>Freezing</topic><topic>Humans</topic><topic>Inception module</topic><topic>Knowledge management</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Performance enhancement</topic><topic>pre-trained model</topic><topic>Regularization</topic><topic>Task analysis</topic><topic>Transfer learning</topic><topic>VGG16</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saini, Manisha</creatorcontrib><creatorcontrib>Susan, Seba</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saini, Manisha</au><au>Susan, Seba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-01</date><risdate>2023</risdate><volume>20</volume><issue>1</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>In this paper, we have presented a novel deep neural network architecture involving transfer learning approach, formed by freezing and concatenating all the layers till block4 pool layer of VGG16 pre-trained model (at the lower level) with the layers of a randomly initialized naïve Inception block module (at the higher level). Further, we have added the batch normalization, flatten, dropout and dense layers in the proposed architecture. Our transfer network, called VGGIN-Net, facilitates the transfer of domain knowledge from the larger ImageNet object dataset to the smaller imbalanced breast cancer dataset. To improve the performance of the proposed model, regularization was used in the form of dropout and data augmentation. A detailed block-wise fine tuning has been conducted on the proposed deep transfer network for images of different magnification factors. The results of extensive experiments indicate a significant improvement of classification performance after the application of fine-tuning. The proposed deep learning architecture with transfer learning and fine-tuning yields the highest accuracies in comparison to other state-of-the-art approaches for the classification of BreakHis breast cancer dataset. The articulated architecture is designed in a way that it can be effectively transfer learned on other breast cancer datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35349449</pmid><doi>10.1109/TCBB.2022.3163277</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6709-6591</orcidid><orcidid>https://orcid.org/0000-0003-4807-6787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2023-01, Vol.20 (1), p.752-762
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_2645470814
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Artificial neural networks
Breast cancer
Breast Neoplasms - diagnostic imaging
Classification
Computer architecture
convolutional neural networks
Datasets
Deep learning
Feature extraction
Female
fine tuning
Freezing
Humans
Inception module
Knowledge management
Machine learning
Neural networks
Neural Networks, Computer
Performance enhancement
pre-trained model
Regularization
Task analysis
Transfer learning
VGG16
title VGGIN-Net: Deep Transfer Network for Imbalanced Breast Cancer Dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T08%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VGGIN-Net:%20Deep%20Transfer%20Network%20for%20Imbalanced%20Breast%20Cancer%20Dataset&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Saini,%20Manisha&rft.date=2023-01&rft.volume=20&rft.issue=1&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2022.3163277&rft_dat=%3Cproquest_pubme%3E2773453419%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-272853caac0b0015cb4c79478e8b2f45539037a18772f8c75938b2dadf18ecc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773453419&rft_id=info:pmid/35349449&rft_ieee_id=9744541&rfr_iscdi=true