Loading…

Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates

To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (39), p.e2103457-n/a
Main Authors: Jun, Sang Eon, Hong, Seung‐Pyo, Choi, Seokhoon, Kim, Changyeon, Ji, Su Geun, Park, Ik Jae, Lee, Sol A, Yang, Jin Wook, Lee, Tae Hyung, Sohn, Woonbae, Kim, Jin Young, Jang, Ho Won
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 39
container_start_page e2103457
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Jun, Sang Eon
Hong, Seung‐Pyo
Choi, Seokhoon
Kim, Changyeon
Ji, Su Geun
Park, Ik Jae
Lee, Sol A
Yang, Jin Wook
Lee, Tae Hyung
Sohn, Woonbae
Kim, Jin Young
Jang, Ho Won
description To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge‐exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge‐rich MoS2 nanoplates are elaborately synthesized and deposited on p‐Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti‐reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p‐Si and catalyst layers facilitates the transport of photogenerated electrons under steady‐state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p‐Si photocathode exhibits significantly improved photoelectrochemical‐hydrogen evolution reaction (PEC‐HER) performance in alkaline media with a high photocurrent density of 10 mA cm−2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth‐abundant Fe60(NiCo)30Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm−2 corresponding to 6.6% solar‐to‐hydrogen efficiency, which is the highest among p‐Si photocathodes. TiO2 nanorods decorated by edge‐exposed MoS2 nanoplates are successfully deposited on silicon photocathode using hydrothermal method. The device shows remarkable photoelectrochemical performance under alkaline environment due to enhanced anti‐reflectance, edge‐rich active sites, and energetically favorable photogenerated electron transfer. Based on as‐fabricated photocathode, photoelectrochemical‐photovoltaic tandem device is constructed for unbiased alkaline solar water splitting, exhibiting 6.6% solar‐to‐hydrogen efficiency.
doi_str_mv 10.1002/smll.202103457
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566040188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566040188</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2667-aedf1df67b585a5c45763c6d4efd2054823a72ef370bc68d479de1781280e5183</originalsourceid><addsrcrecordid>eNpdkTtPwzAUhS0EEqWwMltiYWmxndhOxlLKQ0opIq0YIzd2Ghc3DnGqqhsrG7-RX0KioA4s96H76ehcHQAuMRpihMiN2xgzJIhg5PmUH4EeZtgbsICEx4cZo1Nw5twaIQ8Tn_fA1621rtbFCi4K4Zx2tZJwZN6F0YWCsTWigm-iVhWMS6PrjnRtjbXRqS3gS25rm4o6t1LBna5zONczAp9FYSsrHbxTqa1EK7vcw4lcqZ_P71ed5nBq4w4rTXN25-AkE8api7_eB4v7yXz8OIhmD0_jUTQoCWN8IJTMsMwYX9KACpo2rzIvZdJXmSSI-gHxBCcq8zhapiyQPg-lwjzAJECK4sDrg-tOt6zsx1a5OtlolypjRKHs1iWEMoZ8hIMWvfqHru22Khp3DdVI0pBw3FBhR-20UfukrPRGVPsEo6SNJWljSQ6xJPE0ig6b9wtbkoUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578159271</pqid></control><display><type>article</type><title>Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates</title><source>Wiley-Blackwell Journals</source><creator>Jun, Sang Eon ; Hong, Seung‐Pyo ; Choi, Seokhoon ; Kim, Changyeon ; Ji, Su Geun ; Park, Ik Jae ; Lee, Sol A ; Yang, Jin Wook ; Lee, Tae Hyung ; Sohn, Woonbae ; Kim, Jin Young ; Jang, Ho Won</creator><creatorcontrib>Jun, Sang Eon ; Hong, Seung‐Pyo ; Choi, Seokhoon ; Kim, Changyeon ; Ji, Su Geun ; Park, Ik Jae ; Lee, Sol A ; Yang, Jin Wook ; Lee, Tae Hyung ; Sohn, Woonbae ; Kim, Jin Young ; Jang, Ho Won</creatorcontrib><description>To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge‐exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge‐rich MoS2 nanoplates are elaborately synthesized and deposited on p‐Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti‐reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p‐Si and catalyst layers facilitates the transport of photogenerated electrons under steady‐state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p‐Si photocathode exhibits significantly improved photoelectrochemical‐hydrogen evolution reaction (PEC‐HER) performance in alkaline media with a high photocurrent density of 10 mA cm−2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth‐abundant Fe60(NiCo)30Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm−2 corresponding to 6.6% solar‐to‐hydrogen efficiency, which is the highest among p‐Si photocathodes. TiO2 nanorods decorated by edge‐exposed MoS2 nanoplates are successfully deposited on silicon photocathode using hydrothermal method. The device shows remarkable photoelectrochemical performance under alkaline environment due to enhanced anti‐reflectance, edge‐rich active sites, and energetically favorable photogenerated electron transfer. Based on as‐fabricated photocathode, photoelectrochemical‐photovoltaic tandem device is constructed for unbiased alkaline solar water splitting, exhibiting 6.6% solar‐to‐hydrogen efficiency.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202103457</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Energy bands ; hydrogen evolution ; Hydrogen evolution reactions ; Interfacial energy ; Molybdenum disulfide ; Nanorods ; Nanotechnology ; Perovskites ; Photocathodes ; Photoelectric effect ; photoelectrochemical water splitting ; Photovoltaic cells ; Silicon ; tandem device ; Titanium dioxide ; Transition metals ; Water splitting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (39), p.e2103457-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6952-7359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202103457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202103457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids></links><search><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Hong, Seung‐Pyo</creatorcontrib><creatorcontrib>Choi, Seokhoon</creatorcontrib><creatorcontrib>Kim, Changyeon</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><title>Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge‐exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge‐rich MoS2 nanoplates are elaborately synthesized and deposited on p‐Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti‐reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p‐Si and catalyst layers facilitates the transport of photogenerated electrons under steady‐state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p‐Si photocathode exhibits significantly improved photoelectrochemical‐hydrogen evolution reaction (PEC‐HER) performance in alkaline media with a high photocurrent density of 10 mA cm−2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth‐abundant Fe60(NiCo)30Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm−2 corresponding to 6.6% solar‐to‐hydrogen efficiency, which is the highest among p‐Si photocathodes. TiO2 nanorods decorated by edge‐exposed MoS2 nanoplates are successfully deposited on silicon photocathode using hydrothermal method. The device shows remarkable photoelectrochemical performance under alkaline environment due to enhanced anti‐reflectance, edge‐rich active sites, and energetically favorable photogenerated electron transfer. Based on as‐fabricated photocathode, photoelectrochemical‐photovoltaic tandem device is constructed for unbiased alkaline solar water splitting, exhibiting 6.6% solar‐to‐hydrogen efficiency.</description><subject>Catalysts</subject><subject>Energy bands</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Interfacial energy</subject><subject>Molybdenum disulfide</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Perovskites</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>photoelectrochemical water splitting</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>tandem device</subject><subject>Titanium dioxide</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkTtPwzAUhS0EEqWwMltiYWmxndhOxlLKQ0opIq0YIzd2Ghc3DnGqqhsrG7-RX0KioA4s96H76ehcHQAuMRpihMiN2xgzJIhg5PmUH4EeZtgbsICEx4cZo1Nw5twaIQ8Tn_fA1621rtbFCi4K4Zx2tZJwZN6F0YWCsTWigm-iVhWMS6PrjnRtjbXRqS3gS25rm4o6t1LBna5zONczAp9FYSsrHbxTqa1EK7vcw4lcqZ_P71ed5nBq4w4rTXN25-AkE8api7_eB4v7yXz8OIhmD0_jUTQoCWN8IJTMsMwYX9KACpo2rzIvZdJXmSSI-gHxBCcq8zhapiyQPg-lwjzAJECK4sDrg-tOt6zsx1a5OtlolypjRKHs1iWEMoZ8hIMWvfqHru22Khp3DdVI0pBw3FBhR-20UfukrPRGVPsEo6SNJWljSQ6xJPE0ig6b9wtbkoUk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jun, Sang Eon</creator><creator>Hong, Seung‐Pyo</creator><creator>Choi, Seokhoon</creator><creator>Kim, Changyeon</creator><creator>Ji, Su Geun</creator><creator>Park, Ik Jae</creator><creator>Lee, Sol A</creator><creator>Yang, Jin Wook</creator><creator>Lee, Tae Hyung</creator><creator>Sohn, Woonbae</creator><creator>Kim, Jin Young</creator><creator>Jang, Ho Won</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid></search><sort><creationdate>20211001</creationdate><title>Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates</title><author>Jun, Sang Eon ; Hong, Seung‐Pyo ; Choi, Seokhoon ; Kim, Changyeon ; Ji, Su Geun ; Park, Ik Jae ; Lee, Sol A ; Yang, Jin Wook ; Lee, Tae Hyung ; Sohn, Woonbae ; Kim, Jin Young ; Jang, Ho Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2667-aedf1df67b585a5c45763c6d4efd2054823a72ef370bc68d479de1781280e5183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysts</topic><topic>Energy bands</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Interfacial energy</topic><topic>Molybdenum disulfide</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Perovskites</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>photoelectrochemical water splitting</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>tandem device</topic><topic>Titanium dioxide</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Sang Eon</creatorcontrib><creatorcontrib>Hong, Seung‐Pyo</creatorcontrib><creatorcontrib>Choi, Seokhoon</creatorcontrib><creatorcontrib>Kim, Changyeon</creatorcontrib><creatorcontrib>Ji, Su Geun</creatorcontrib><creatorcontrib>Park, Ik Jae</creatorcontrib><creatorcontrib>Lee, Sol A</creatorcontrib><creatorcontrib>Yang, Jin Wook</creatorcontrib><creatorcontrib>Lee, Tae Hyung</creatorcontrib><creatorcontrib>Sohn, Woonbae</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Jang, Ho Won</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Sang Eon</au><au>Hong, Seung‐Pyo</au><au>Choi, Seokhoon</au><au>Kim, Changyeon</au><au>Ji, Su Geun</au><au>Park, Ik Jae</au><au>Lee, Sol A</au><au>Yang, Jin Wook</au><au>Lee, Tae Hyung</au><au>Sohn, Woonbae</au><au>Kim, Jin Young</au><au>Jang, Ho Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>39</issue><spage>e2103457</spage><epage>n/a</epage><pages>e2103457-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>To construct a highly efficient photoelectrochemical tandem device with silicon photocathode operating in alkaline conditions, it is desirable to develop stable and active catalysts which enable the photocathode to reliably perform under an alkaline environment. With nanostructured passivation layer and edge‐exposed transition metal disulfides, silicon photocathode provides new opportunities for achieving unbiased alkaline solar water splitting. Here, the TiO2 nanorod arrays decorated by edge‐rich MoS2 nanoplates are elaborately synthesized and deposited on p‐Si. The vertically aligned TiO2 nanorods fully stabilize the Si surface and improve anti‐reflectance. Moreover, MoS2 nanoplates with exposed edge sites provide catalytically active regions resulting in the kinetically favored hydrogen evolution under an alkaline environment. Interfacial energy band bending between p‐Si and catalyst layers facilitates the transport of photogenerated electrons under steady‐state illumination. Consequently, the MoS2 nanoplates/TiO2 nanorods/p‐Si photocathode exhibits significantly improved photoelectrochemical‐hydrogen evolution reaction (PEC‐HER) performance in alkaline media with a high photocurrent density of 10 mA cm−2 at 0 V versus RHE and high stability. By integrating rationally designed photocathode with earth‐abundant Fe60(NiCo)30Cr10 anode and perovskite/Si tandem photovoltaic cell, an unassisted alkaline solar water splitting is accomplished with a current density of 5.4 mA cm−2 corresponding to 6.6% solar‐to‐hydrogen efficiency, which is the highest among p‐Si photocathodes. TiO2 nanorods decorated by edge‐exposed MoS2 nanoplates are successfully deposited on silicon photocathode using hydrothermal method. The device shows remarkable photoelectrochemical performance under alkaline environment due to enhanced anti‐reflectance, edge‐rich active sites, and energetically favorable photogenerated electron transfer. Based on as‐fabricated photocathode, photoelectrochemical‐photovoltaic tandem device is constructed for unbiased alkaline solar water splitting, exhibiting 6.6% solar‐to‐hydrogen efficiency.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202103457</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6952-7359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (39), p.e2103457-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2566040188
source Wiley-Blackwell Journals
subjects Catalysts
Energy bands
hydrogen evolution
Hydrogen evolution reactions
Interfacial energy
Molybdenum disulfide
Nanorods
Nanotechnology
Perovskites
Photocathodes
Photoelectric effect
photoelectrochemical water splitting
Photovoltaic cells
Silicon
tandem device
Titanium dioxide
Transition metals
Water splitting
title Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge‐Rich MoS2 Nanoplates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-28T23%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Unassisted%20Alkaline%20Solar%20Water%20Splitting%20Using%20Silicon%20Photocathode%20with%20TiO2%20Nanorods%20Decorated%20by%20Edge%E2%80%90Rich%20MoS2%20Nanoplates&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jun,%20Sang%20Eon&rft.date=2021-10-01&rft.volume=17&rft.issue=39&rft.spage=e2103457&rft.epage=n/a&rft.pages=e2103457-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202103457&rft_dat=%3Cproquest_wiley%3E2566040188%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2667-aedf1df67b585a5c45763c6d4efd2054823a72ef370bc68d479de1781280e5183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578159271&rft_id=info:pmid/&rfr_iscdi=true