Loading…

Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molec...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2021-07, Vol.33 (30), p.e2101682-n/a
Main Authors: Tsurkan, Dmitry, Simon, Paul, Schimpf, Christian, Motylenko, Mykhaylo, Rafaja, David, Roth, Friedrich, Inosov, Dmytro S., Makarova, Anna A., Stepniak, Izabela, Petrenko, Iaroslav, Springer, Armin, Langer, Enrico, Kulbakov, Anton A., Avdeev, Maxim, Stefankiewicz, Artur R., Heimler, Korbinian, Kononchuk, Olga, Hippmann, Sebastian, Kaiser, Doreen, Viehweger, Christine, Rogoll, Anika, Voronkina, Alona, Kovalchuk, Valentine, Bazhenov, Vasilii V., Galli, Roberta, Rahimi‐Nasrabadi, Mehdi, Molodtsov, Serguei L., Rahimi, Parvaneh, Falahi, Sedigheh, Joseph, Yvonne, Vogt, Carla, Vyalikh, Denis V., Bertau, Martin, Ehrlich, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3
cites cdi_FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3
container_end_page n/a
container_issue 30
container_start_page e2101682
container_title Advanced materials (Weinheim)
container_volume 33
creator Tsurkan, Dmitry
Simon, Paul
Schimpf, Christian
Motylenko, Mykhaylo
Rafaja, David
Roth, Friedrich
Inosov, Dmytro S.
Makarova, Anna A.
Stepniak, Izabela
Petrenko, Iaroslav
Springer, Armin
Langer, Enrico
Kulbakov, Anton A.
Avdeev, Maxim
Stefankiewicz, Artur R.
Heimler, Korbinian
Kononchuk, Olga
Hippmann, Sebastian
Kaiser, Doreen
Viehweger, Christine
Rogoll, Anika
Voronkina, Alona
Kovalchuk, Valentine
Bazhenov, Vasilii V.
Galli, Roberta
Rahimi‐Nasrabadi, Mehdi
Molodtsov, Serguei L.
Rahimi, Parvaneh
Falahi, Sedigheh
Joseph, Yvonne
Vogt, Carla
Vyalikh, Denis V.
Bertau, Martin
Ehrlich, Hermann
description The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano‐level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter‐scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X‐ray diffraction, high‐resolution transmission electron microscopy/selected‐area electron diffraction, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems. An extreme biomimetics key way for designing of multifunctional macroporous 3D atacamite‐based composites using the renewable biopolymer spongin is proposed. Neutron diffraction, X‐ray diffraction, selected‐area electron diffraction, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and near‐edge X‐ray absorption fine structure spectroscopy provide insights, which help to understand a mechanism for its formation from a model solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide.
doi_str_mv 10.1002/adma.202101682
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2537643932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555582633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotuFK0dkiQuXLGM7dmNu6W4LSAUOwDlyksniKraD7Qh64x14wz4JWW0pEhfmMiPNN79G_0_IMwYbBsBfmd6ZDQfOgKmKPyArJjkrStDyIVmBFrLQqqxOyGlK1wCgFajH5ESUUEnBxYqEix85okN6boOzDrPt0mu6w2T33vo9DQPNX5Fe2pgy_WB8SDnOXZ4j9lTs6Kcp-L31tz9_1dl0xtmMdBvcFNJhMr6nNidaT9NoO5Nt8E_Io8GMCZ_e9TX5cnnxefu2uPr45t22viq6kgleaMZVBy3TiEwPArBFFL2Cvu0roVC1oMGUlSkH5HIwUp4x2S4LXnGQkqNYk5dH3SmGbzOm3DibOhxH4zHMqeFSnKlS6MWENXnxD3od5uiX7xZqqYorIRZqc6S6GFKKODRTtM7Em4ZBc4iiOUTR3EexHDy_k51bh_09_sf7BdBH4Lsd8eY_ck29e1__Ff8NJVqWEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555582633</pqid></control><display><type>article</type><title>Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application</title><source>Wiley Online Library</source><creator>Tsurkan, Dmitry ; Simon, Paul ; Schimpf, Christian ; Motylenko, Mykhaylo ; Rafaja, David ; Roth, Friedrich ; Inosov, Dmytro S. ; Makarova, Anna A. ; Stepniak, Izabela ; Petrenko, Iaroslav ; Springer, Armin ; Langer, Enrico ; Kulbakov, Anton A. ; Avdeev, Maxim ; Stefankiewicz, Artur R. ; Heimler, Korbinian ; Kononchuk, Olga ; Hippmann, Sebastian ; Kaiser, Doreen ; Viehweger, Christine ; Rogoll, Anika ; Voronkina, Alona ; Kovalchuk, Valentine ; Bazhenov, Vasilii V. ; Galli, Roberta ; Rahimi‐Nasrabadi, Mehdi ; Molodtsov, Serguei L. ; Rahimi, Parvaneh ; Falahi, Sedigheh ; Joseph, Yvonne ; Vogt, Carla ; Vyalikh, Denis V. ; Bertau, Martin ; Ehrlich, Hermann</creator><creatorcontrib>Tsurkan, Dmitry ; Simon, Paul ; Schimpf, Christian ; Motylenko, Mykhaylo ; Rafaja, David ; Roth, Friedrich ; Inosov, Dmytro S. ; Makarova, Anna A. ; Stepniak, Izabela ; Petrenko, Iaroslav ; Springer, Armin ; Langer, Enrico ; Kulbakov, Anton A. ; Avdeev, Maxim ; Stefankiewicz, Artur R. ; Heimler, Korbinian ; Kononchuk, Olga ; Hippmann, Sebastian ; Kaiser, Doreen ; Viehweger, Christine ; Rogoll, Anika ; Voronkina, Alona ; Kovalchuk, Valentine ; Bazhenov, Vasilii V. ; Galli, Roberta ; Rahimi‐Nasrabadi, Mehdi ; Molodtsov, Serguei L. ; Rahimi, Parvaneh ; Falahi, Sedigheh ; Joseph, Yvonne ; Vogt, Carla ; Vyalikh, Denis V. ; Bertau, Martin ; Ehrlich, Hermann</creatorcontrib><description>The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano‐level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter‐scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X‐ray diffraction, high‐resolution transmission electron microscopy/selected‐area electron diffraction, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems. An extreme biomimetics key way for designing of multifunctional macroporous 3D atacamite‐based composites using the renewable biopolymer spongin is proposed. Neutron diffraction, X‐ray diffraction, selected‐area electron diffraction, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and near‐edge X‐ray absorption fine structure spectroscopy provide insights, which help to understand a mechanism for its formation from a model solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101682</identifier><identifier>PMID: 34085323</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ammonia - chemistry ; Antiinfectives and antibacterials ; atacamite ; Biomimetic Materials - chemistry ; Biomimetics ; Biopolymers ; Biopolymers - chemistry ; Catalysis ; catalysts ; Chemical reactions ; Chlorides - chemistry ; Circuit boards ; Composite materials ; composites ; Copper - chemistry ; Electron diffraction ; Electron paramagnetic resonance ; extreme biomimetics ; Fine structure ; Humans ; Materials science ; Molecular Conformation ; Nanocomposites - chemistry ; Neutron diffraction ; Oxidation-Reduction ; Photoelectrons ; Porosity ; Printing, Three-Dimensional ; sensors ; Spectrum analysis ; spongin ; Structure-Activity Relationship ; tenorite ; Three dimensional composites ; Toxic wastes ; Water Pollution, Chemical - prevention &amp; control</subject><ispartof>Advanced materials (Weinheim), 2021-07, Vol.33 (30), p.e2101682-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3</citedby><cites>FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3</cites><orcidid>0000-0003-4951-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101682$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101682$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34085323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsurkan, Dmitry</creatorcontrib><creatorcontrib>Simon, Paul</creatorcontrib><creatorcontrib>Schimpf, Christian</creatorcontrib><creatorcontrib>Motylenko, Mykhaylo</creatorcontrib><creatorcontrib>Rafaja, David</creatorcontrib><creatorcontrib>Roth, Friedrich</creatorcontrib><creatorcontrib>Inosov, Dmytro S.</creatorcontrib><creatorcontrib>Makarova, Anna A.</creatorcontrib><creatorcontrib>Stepniak, Izabela</creatorcontrib><creatorcontrib>Petrenko, Iaroslav</creatorcontrib><creatorcontrib>Springer, Armin</creatorcontrib><creatorcontrib>Langer, Enrico</creatorcontrib><creatorcontrib>Kulbakov, Anton A.</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Stefankiewicz, Artur R.</creatorcontrib><creatorcontrib>Heimler, Korbinian</creatorcontrib><creatorcontrib>Kononchuk, Olga</creatorcontrib><creatorcontrib>Hippmann, Sebastian</creatorcontrib><creatorcontrib>Kaiser, Doreen</creatorcontrib><creatorcontrib>Viehweger, Christine</creatorcontrib><creatorcontrib>Rogoll, Anika</creatorcontrib><creatorcontrib>Voronkina, Alona</creatorcontrib><creatorcontrib>Kovalchuk, Valentine</creatorcontrib><creatorcontrib>Bazhenov, Vasilii V.</creatorcontrib><creatorcontrib>Galli, Roberta</creatorcontrib><creatorcontrib>Rahimi‐Nasrabadi, Mehdi</creatorcontrib><creatorcontrib>Molodtsov, Serguei L.</creatorcontrib><creatorcontrib>Rahimi, Parvaneh</creatorcontrib><creatorcontrib>Falahi, Sedigheh</creatorcontrib><creatorcontrib>Joseph, Yvonne</creatorcontrib><creatorcontrib>Vogt, Carla</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Bertau, Martin</creatorcontrib><creatorcontrib>Ehrlich, Hermann</creatorcontrib><title>Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano‐level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter‐scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X‐ray diffraction, high‐resolution transmission electron microscopy/selected‐area electron diffraction, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems. An extreme biomimetics key way for designing of multifunctional macroporous 3D atacamite‐based composites using the renewable biopolymer spongin is proposed. Neutron diffraction, X‐ray diffraction, selected‐area electron diffraction, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and near‐edge X‐ray absorption fine structure spectroscopy provide insights, which help to understand a mechanism for its formation from a model solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide.</description><subject>Ammonia - chemistry</subject><subject>Antiinfectives and antibacterials</subject><subject>atacamite</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Biopolymers</subject><subject>Biopolymers - chemistry</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>Chemical reactions</subject><subject>Chlorides - chemistry</subject><subject>Circuit boards</subject><subject>Composite materials</subject><subject>composites</subject><subject>Copper - chemistry</subject><subject>Electron diffraction</subject><subject>Electron paramagnetic resonance</subject><subject>extreme biomimetics</subject><subject>Fine structure</subject><subject>Humans</subject><subject>Materials science</subject><subject>Molecular Conformation</subject><subject>Nanocomposites - chemistry</subject><subject>Neutron diffraction</subject><subject>Oxidation-Reduction</subject><subject>Photoelectrons</subject><subject>Porosity</subject><subject>Printing, Three-Dimensional</subject><subject>sensors</subject><subject>Spectrum analysis</subject><subject>spongin</subject><subject>Structure-Activity Relationship</subject><subject>tenorite</subject><subject>Three dimensional composites</subject><subject>Toxic wastes</subject><subject>Water Pollution, Chemical - prevention &amp; control</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkcFu1DAQhi0EotuFK0dkiQuXLGM7dmNu6W4LSAUOwDlyksniKraD7Qh64x14wz4JWW0pEhfmMiPNN79G_0_IMwYbBsBfmd6ZDQfOgKmKPyArJjkrStDyIVmBFrLQqqxOyGlK1wCgFajH5ESUUEnBxYqEix85okN6boOzDrPt0mu6w2T33vo9DQPNX5Fe2pgy_WB8SDnOXZ4j9lTs6Kcp-L31tz9_1dl0xtmMdBvcFNJhMr6nNidaT9NoO5Nt8E_Io8GMCZ_e9TX5cnnxefu2uPr45t22viq6kgleaMZVBy3TiEwPArBFFL2Cvu0roVC1oMGUlSkH5HIwUp4x2S4LXnGQkqNYk5dH3SmGbzOm3DibOhxH4zHMqeFSnKlS6MWENXnxD3od5uiX7xZqqYorIRZqc6S6GFKKODRTtM7Em4ZBc4iiOUTR3EexHDy_k51bh_09_sf7BdBH4Lsd8eY_ck29e1__Ff8NJVqWEQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tsurkan, Dmitry</creator><creator>Simon, Paul</creator><creator>Schimpf, Christian</creator><creator>Motylenko, Mykhaylo</creator><creator>Rafaja, David</creator><creator>Roth, Friedrich</creator><creator>Inosov, Dmytro S.</creator><creator>Makarova, Anna A.</creator><creator>Stepniak, Izabela</creator><creator>Petrenko, Iaroslav</creator><creator>Springer, Armin</creator><creator>Langer, Enrico</creator><creator>Kulbakov, Anton A.</creator><creator>Avdeev, Maxim</creator><creator>Stefankiewicz, Artur R.</creator><creator>Heimler, Korbinian</creator><creator>Kononchuk, Olga</creator><creator>Hippmann, Sebastian</creator><creator>Kaiser, Doreen</creator><creator>Viehweger, Christine</creator><creator>Rogoll, Anika</creator><creator>Voronkina, Alona</creator><creator>Kovalchuk, Valentine</creator><creator>Bazhenov, Vasilii V.</creator><creator>Galli, Roberta</creator><creator>Rahimi‐Nasrabadi, Mehdi</creator><creator>Molodtsov, Serguei L.</creator><creator>Rahimi, Parvaneh</creator><creator>Falahi, Sedigheh</creator><creator>Joseph, Yvonne</creator><creator>Vogt, Carla</creator><creator>Vyalikh, Denis V.</creator><creator>Bertau, Martin</creator><creator>Ehrlich, Hermann</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4951-3555</orcidid></search><sort><creationdate>20210701</creationdate><title>Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application</title><author>Tsurkan, Dmitry ; Simon, Paul ; Schimpf, Christian ; Motylenko, Mykhaylo ; Rafaja, David ; Roth, Friedrich ; Inosov, Dmytro S. ; Makarova, Anna A. ; Stepniak, Izabela ; Petrenko, Iaroslav ; Springer, Armin ; Langer, Enrico ; Kulbakov, Anton A. ; Avdeev, Maxim ; Stefankiewicz, Artur R. ; Heimler, Korbinian ; Kononchuk, Olga ; Hippmann, Sebastian ; Kaiser, Doreen ; Viehweger, Christine ; Rogoll, Anika ; Voronkina, Alona ; Kovalchuk, Valentine ; Bazhenov, Vasilii V. ; Galli, Roberta ; Rahimi‐Nasrabadi, Mehdi ; Molodtsov, Serguei L. ; Rahimi, Parvaneh ; Falahi, Sedigheh ; Joseph, Yvonne ; Vogt, Carla ; Vyalikh, Denis V. ; Bertau, Martin ; Ehrlich, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia - chemistry</topic><topic>Antiinfectives and antibacterials</topic><topic>atacamite</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Biopolymers</topic><topic>Biopolymers - chemistry</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>Chemical reactions</topic><topic>Chlorides - chemistry</topic><topic>Circuit boards</topic><topic>Composite materials</topic><topic>composites</topic><topic>Copper - chemistry</topic><topic>Electron diffraction</topic><topic>Electron paramagnetic resonance</topic><topic>extreme biomimetics</topic><topic>Fine structure</topic><topic>Humans</topic><topic>Materials science</topic><topic>Molecular Conformation</topic><topic>Nanocomposites - chemistry</topic><topic>Neutron diffraction</topic><topic>Oxidation-Reduction</topic><topic>Photoelectrons</topic><topic>Porosity</topic><topic>Printing, Three-Dimensional</topic><topic>sensors</topic><topic>Spectrum analysis</topic><topic>spongin</topic><topic>Structure-Activity Relationship</topic><topic>tenorite</topic><topic>Three dimensional composites</topic><topic>Toxic wastes</topic><topic>Water Pollution, Chemical - prevention &amp; control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsurkan, Dmitry</creatorcontrib><creatorcontrib>Simon, Paul</creatorcontrib><creatorcontrib>Schimpf, Christian</creatorcontrib><creatorcontrib>Motylenko, Mykhaylo</creatorcontrib><creatorcontrib>Rafaja, David</creatorcontrib><creatorcontrib>Roth, Friedrich</creatorcontrib><creatorcontrib>Inosov, Dmytro S.</creatorcontrib><creatorcontrib>Makarova, Anna A.</creatorcontrib><creatorcontrib>Stepniak, Izabela</creatorcontrib><creatorcontrib>Petrenko, Iaroslav</creatorcontrib><creatorcontrib>Springer, Armin</creatorcontrib><creatorcontrib>Langer, Enrico</creatorcontrib><creatorcontrib>Kulbakov, Anton A.</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Stefankiewicz, Artur R.</creatorcontrib><creatorcontrib>Heimler, Korbinian</creatorcontrib><creatorcontrib>Kononchuk, Olga</creatorcontrib><creatorcontrib>Hippmann, Sebastian</creatorcontrib><creatorcontrib>Kaiser, Doreen</creatorcontrib><creatorcontrib>Viehweger, Christine</creatorcontrib><creatorcontrib>Rogoll, Anika</creatorcontrib><creatorcontrib>Voronkina, Alona</creatorcontrib><creatorcontrib>Kovalchuk, Valentine</creatorcontrib><creatorcontrib>Bazhenov, Vasilii V.</creatorcontrib><creatorcontrib>Galli, Roberta</creatorcontrib><creatorcontrib>Rahimi‐Nasrabadi, Mehdi</creatorcontrib><creatorcontrib>Molodtsov, Serguei L.</creatorcontrib><creatorcontrib>Rahimi, Parvaneh</creatorcontrib><creatorcontrib>Falahi, Sedigheh</creatorcontrib><creatorcontrib>Joseph, Yvonne</creatorcontrib><creatorcontrib>Vogt, Carla</creatorcontrib><creatorcontrib>Vyalikh, Denis V.</creatorcontrib><creatorcontrib>Bertau, Martin</creatorcontrib><creatorcontrib>Ehrlich, Hermann</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsurkan, Dmitry</au><au>Simon, Paul</au><au>Schimpf, Christian</au><au>Motylenko, Mykhaylo</au><au>Rafaja, David</au><au>Roth, Friedrich</au><au>Inosov, Dmytro S.</au><au>Makarova, Anna A.</au><au>Stepniak, Izabela</au><au>Petrenko, Iaroslav</au><au>Springer, Armin</au><au>Langer, Enrico</au><au>Kulbakov, Anton A.</au><au>Avdeev, Maxim</au><au>Stefankiewicz, Artur R.</au><au>Heimler, Korbinian</au><au>Kononchuk, Olga</au><au>Hippmann, Sebastian</au><au>Kaiser, Doreen</au><au>Viehweger, Christine</au><au>Rogoll, Anika</au><au>Voronkina, Alona</au><au>Kovalchuk, Valentine</au><au>Bazhenov, Vasilii V.</au><au>Galli, Roberta</au><au>Rahimi‐Nasrabadi, Mehdi</au><au>Molodtsov, Serguei L.</au><au>Rahimi, Parvaneh</au><au>Falahi, Sedigheh</au><au>Joseph, Yvonne</au><au>Vogt, Carla</au><au>Vyalikh, Denis V.</au><au>Bertau, Martin</au><au>Ehrlich, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>30</issue><spage>e2101682</spage><epage>n/a</epage><pages>e2101682-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><notes>Dedicated to the memory of Dr. Izabela Stepniak</notes><notes>Deceased January 2021</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano‐level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter‐scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X‐ray diffraction, high‐resolution transmission electron microscopy/selected‐area electron diffraction, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems. An extreme biomimetics key way for designing of multifunctional macroporous 3D atacamite‐based composites using the renewable biopolymer spongin is proposed. Neutron diffraction, X‐ray diffraction, selected‐area electron diffraction, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and near‐edge X‐ray absorption fine structure spectroscopy provide insights, which help to understand a mechanism for its formation from a model solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34085323</pmid><doi>10.1002/adma.202101682</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4951-3555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-07, Vol.33 (30), p.e2101682-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2537643932
source Wiley Online Library
subjects Ammonia - chemistry
Antiinfectives and antibacterials
atacamite
Biomimetic Materials - chemistry
Biomimetics
Biopolymers
Biopolymers - chemistry
Catalysis
catalysts
Chemical reactions
Chlorides - chemistry
Circuit boards
Composite materials
composites
Copper - chemistry
Electron diffraction
Electron paramagnetic resonance
extreme biomimetics
Fine structure
Humans
Materials science
Molecular Conformation
Nanocomposites - chemistry
Neutron diffraction
Oxidation-Reduction
Photoelectrons
Porosity
Printing, Three-Dimensional
sensors
Spectrum analysis
spongin
Structure-Activity Relationship
tenorite
Three dimensional composites
Toxic wastes
Water Pollution, Chemical - prevention & control
title Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin–Atacamite Composite and its Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T15%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20Biomimetics:%20Designing%20of%20the%20First%20Nanostructured%203D%20Spongin%E2%80%93Atacamite%20Composite%20and%20its%20Application&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tsurkan,%20Dmitry&rft.date=2021-07-01&rft.volume=33&rft.issue=30&rft.spage=e2101682&rft.epage=n/a&rft.pages=e2101682-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101682&rft_dat=%3Cproquest_cross%3E2555582633%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4132-9126c0b19ee19f30ebee3d60dbd836e6b090a48a4fe25fa55715b36e2820552e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2555582633&rft_id=info:pmid/34085323&rfr_iscdi=true