Loading…

Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers

Heat stress (HS) in dairy cows can be classified into short-term heat stress (STHS) and long-term heat stress (LTHS) according to the number of consecutive days in HS. The comparative study of these 2 types of HS is limited in terms of their effects on the production and energy metabolism of cows. I...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2021-02, Vol.104 (2), p.2346-2356
Main Authors: Hou, Y., Zhang, L., Dong, R.Y., Liang, M.Y., Lu, Y., Sun, X.Q., Zhao, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat stress (HS) in dairy cows can be classified into short-term heat stress (STHS) and long-term heat stress (LTHS) according to the number of consecutive days in HS. The comparative study of these 2 types of HS is limited in terms of their effects on the production and energy metabolism of cows. In this study, 4 lactating Holstein cows (102.5 ± 12 days in milk, 605 ± 22 kg of body weight, second parity) fitted with rumen fistulae were randomly assigned to 1 of 2 groups in a 2 × 2 crossover design and allocated to 1 of 2 climate-controlled chambers. This study contained 2 periods, each with a control phase and a HS phase. There was a recovery phase between 2 periods. The HS phase comprised either STHS (3 d) or LTHS (7 d) treatments. Data collected from the 3 d of STHS and the last 3 d of LTHS were compared. The chambers were set at thermal neutral conditions (20°C, 50% humidity) during the control and recovery phases or cyclical HS conditions (26–38°C, 50% humidity) during the HS phase. Compared with STHS, LTHS decreased milk yield by 17.2% and dry matter intake by 12.6%, indicating that LTHS caused a more severe decline in milk production and feed intake. In addition, LTHS decreased milk protein concentration by 6.8% and milk protein yield by 22.4%. In comparison with STHS, LTHS decreased rumen liquor volatile fatty acid (29.7%), blood glucose (11.6%), and nonesterified fatty acid (13.6%) concentrations, but increased milk urea nitrogen by 15.1%, blood urea nitrogen by 8.6%, and creatine concentrations by 15.4%. Our results suggest that although reduced feed intake may be mainly responsible for reduced milk production during STHS, impaired rumen metabolism and suppressed mobilization of adipose tissue could be the main reasons for further reduction in milk yield during LTHS.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2020-18946